# IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138



INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG

An International Open Access, Peer-reviewed, Refereed Journal

# **BIODEGRADATION OF TRACE METALS BY BACTERIA**

# 1. **Dr. C.VINOTHINI,** ASSISTANT, DEPARTMENT OF BIOTECHNOLOGY, PROFESSOR, E.G.S, PILLAY COLLEGE OF ARTS AND SCIENCE, NAGAPPATTINAM.

#### 2. Dr. S.RAVIKUMAR, ASSISTANT PROFESSOR, ,DEPARTMENT OF BOTANY,J.M.C COLLEGE.TRICHY

### 1.ABSTRACT;

Heavy metal pollution has drawn increasing attention worldwide owing to a dramatic increase in anthropogenic heavy metals in ecosystems through air, water and soil (Woitke *et al.*, 2003). The aim of this study was to determine the level of pollution indicators, concentrations of physiochemical, heavy metal and microbiological parameters from the certain oil contaminated regions (four sampling sites) of Tiruchirappalli city during one year (four different seasons-post monsoon, summer, premonsoon and monsoon seasons). The spatial and temporal variations of all parameters (variables) and their interactions between these two things by using different statistical tools was analyzed physiochemical parameters, i.e., pH, electrical conductivity (EC), total dissolved solids (TDS) and salinity were measured by standard methods (APHA, 1998; Vignesh et al., 2014, The isolated 60 bacterial strains from the study sites were challenged against chromium metal (Potassium chromate) solutions with four different concentrations (10 mm, 50 mm, 100 mm and 250 mm) for metal resistant studies by plate diffusion and tube dilution methods. The identified the selected potential MMR strains by molecular analysis (16s rDNA sequencing and phylogenetic tree construction studies) Based on the MMR results, potential strains (multi metal resistant strains) were used for bioremediation studies with dry biomass (Bio sorption) and living biomass studies. The copper removal potential of bacterial strain 1 was higher than bacterial strain 2 and also the same pattern follows in the chromium removal methods. Interestingly, the copper was highly removed by microbes than chromium. The bacterial strain 1 effectively removed the metals from a both field trail and natural (medium + metal solution) samples due to its higher metal tolerance, residual growth rate and efficient metal removal. The present results indicate that both *Pseudomonas* biomasses may be a suitable material for the removal of copper and chromium ions from the solution. The dry biomass was act as an effective bio sorbent than the living bio sorbents. In both study, bacterial strain 1 was act as an effective bio sorbent than bacterial strain 2. However, several phases of metal-bacteria interactions remain unexplored and further improvement and application are necessary. Keywords; Heavy metal, MMR, r-DNA Sequesing, Biosorption, TDS, Phylogenetic analysis

#### © 2024 IJRAR March 2024, Volume 11, Issue 1 1.INTRODUCTION:

Environmental surveys are necessary for understanding and documenting the occurrence and distribution of pollution indicator and human pathogenic bacteria. In order to quantify and understand their relationship with relevant environmental factors, several investigators have examined distribution of these groups of bacteria and certain viruses in coastal waters (Kumarasamy *et al.*, 2009; Nagvenkar and Ramaiah *et al.*, 2009; Vignesh *et al.*, 2012). Heavy metal pollution has drawn increasing attention worldwide owing to a dramatic increase in anthropogenic heavy metals in ecosystems through air, water and soil (Woitke *et al.*, 2003). As a result of increasing industrialization, water pollution due to heavy metals has posed serious problems in many aquatic systems since the bacteria can acquire resistance after exposure to these agents Aquatic bacteria develop its resistance behavior to adopt themselves to extreme environments including toxic heavy metals. It has been suggested that the metal resistance may not be a fortuitous phenomenon and bacterial resistance against heavy metals appears to be directly related to the presence of these elements as environmental pollutants

Metal removal by conventional methods like precipitation, flocculation, ion exchange and membrane filtration is expensive and not effective at low concentrations. Bioremediation is an emerging cost-effective, environmentally safe method for the cleanup of environments contaminated with heavy metals compared with conventional methods (De *et al.*, 2006). Microorganisms that have been involved directly in pollutant degradation are principally bacteria, and to a lesser degree fungi, protozoa and benthic invertebrates. Microorganisms, especially bacteria from long-term polluted environments show resistance to several toxic metals Bacterial metal resistance may be mediated by genetic factors, the production of chelating materials (polysaccharides, proteins, etc.), binding by cell surface slime and/or oxidative detoxification (De *et al.*, 2008). The resistance and metal removal efficiency of microbes vary greatly. The aim of this study was to determine the level of pollution indicators, physiochemical and heavy metal parameters from oil contaminated regions of Tiruchirappalli city. Certain strains were isolated from those regions and were challenged against different concentrations of 2 different metals (Copper and Chromium) for heavy metal resistant/ multi metal resistant studies. In addition, the study investigated the copper and chromium sorption capability (dry biomass and living cell) of two selected bacterial strains.

#### 2. Methodology

#### 2.1 Sampling and preprocessing

The water and soil sample were collected from the four different oil contaminated regions of Tiruchirappalli city during (four seasons – post monsoon, summer, premonsoon and monsoon seasons) one throughout year (2015). The 500 mL of oil contaminated water samples were collected with a 2500 mL sterile container in each locations. The oil contaminated soil samples (250 g) were collected by sterile spatula and stored in sterile plastic bags and stored in ice box at 4 °C (Kumarasamy *et al.*, 2009; Vignesh *et al.*, 2014). The samples were transported into laboratory and processed within 12 hrs (Vignesh *et al.*, 2013; 2015). The sampling sites are Ponmalai Railway Shed (PRS), Senthaneerpuram Oil Shed (SOS), Chatram Bus Stand (CHB) and Central Bus Stand (CLB). The

#### © 2024 IJRAR March 2024, Volume 11, Issue 1

#### www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

sampling sites were choose based on the oil pollution. In which the sampling sites were divided in to two categories such as oil shed (PRS and SOS) and oil waste mixing with sewage (CHB and CLB).

#### 2.2Physiochemical analysis

The physiochemical parameters, i.e., pH, electrical conductivity (EC), total dissolved solids (TDS) and salinity were measured using field kit (Thermo Orion 5-Star pH Multi-Meter) on the site and the concentrations of soluble cations, anions and nutrients (around 20 parameters) were determined according to the standard methods (APHA, 1998; Vignesh *et al.*, 2014, 2015). All samples were collected with precautions required for all analysis, held on iceboxes and processed within 6 h of collection.

#### 2.3 Trace metal analysis

The one liter of oil contaminated water was acidified immediately with concentrated nitric acid (HNO<sub>3</sub>) after collection of the sample and were filtered by Whatman No.1 filter paper. After filtration, the sample was processed (APDC + MIBK) for metal analysis. The sediment samples were air-dried and smaller than (>) 63  $\mu$ m in size were retained in pre-cleaned properly. Thereafter, the dried sediment samples were crushed by agate mortar and pestle. The crushed soil sample was treated with aqua-regia mixture (i.e. HCl:HNO<sub>3</sub>= 3:1) in Teflon bomb and were incubated at 140 °C for 2-3 days after dried and sieved samples. After incubation, the reaction mixture was filtered with Whatman No.1 filter paper. The trace metals in the water and soil sample were determined by the atomic absorption spectrophotometry (GBC SensAA - AAS, Australia) in flame mode (Muthukumar *et al.*, 2015).

#### 2.4Bacteriological analysis

The bacterial populations in different samples were estimated by pure culture technique (spread plating method) on selective medium plates with 100  $\mu$ L of suitable dilutions (Kumarasamy et al., 2009). In this study, the selective media were prepared with the addition of double distilled water and autoclaved properly. After addition of sample on selective media plates, the plates were incubated at 37°C ± 1°C for 24–48 h, except M-FC agar plates. The M-FC agar plates were incubated at 44.5°C ± 1°C for 24–48 h (Vignesh *et al.*, 2013). After incubation, the final counts of colonies were noted and all trials were performed in triplicate. For confirmation of the pathogens, typical colonies were inoculated into Rapid Microbial Limit Test kits recommended for diagnostic microbiology supplied by Hi-media Laboratories Limited (Vignesh *et al.*, 2014; 2015).

#### 2.5 Heterotrophic bacterial studies

A total of sixty (60) bacterial strains were isolated from water and soil samples of the sampling sites. The serial dilution and pure culture techniques were used for isolation of bacterial strains and were used as test cultures (Vignesh *et al.*, 2015). All the strains were isolated from the each location and were identified by the specific biochemical tests (Rapid Microbial Limit Test kits used) (Vignesh *et al.*, 2014; Muthukumar *et al.*, 2015).

#### **2.6.Metal resistant studies**

The test isolates were challenged against chromium metal (Potassium chromate) solutions with four different concentrations (10 mM, 50 mM, 100 mM and 250 mM) for metal resistant studies by plate diffusion and tube dilution methods. In plate diffusion assay, the 500  $\mu$ L of chromium metal solution (four different concentration) was added to a central well (1 cm in diameter and 4 mm in depth) of nutrient agar plate separately and to allow it for metal diffusion at one day. In each metal concentration plate, eight bacterial isolates were inoculated in each plate by the radial streaking method. In tube dilution method (Minimal inhibitory concentration method), the appropriate volume of metal solution and 200  $\mu$ L of standard culture (10<sup>8</sup> CFU/mL) were added into nutrient broth medium and make up into 10 mL with sterile nutrient broth. The test plates and tubes incubated at 37±1 °C for 48 h (Hassen *et al.*, 1998). All the trials were performed in triplicate

#### 2.7.Biosorption of Cu and Cr by dry biomass study

The bacterial strains were cultivated aerobically in 1000 ml conical flasks containing sterile nutrient broth on a rotary shaker (150 rpm) at  $35^{\circ} \pm 2^{\circ}$  C, separately. Cells were harvested at the end of exponential phase (after 48 h incubation) and for inactivation of the cells, the cultures were autoclaved (121° C, 15 min) before being harvested by centrifugation (10000 rpm for 20 min at room temperature) and finally freeze dried. The 10 mg dried cell of each biomass were mixed 10 ml of the metal solutions (Cu and Cr) in a two different flask separately. This process were carried with two different pH (pH – 4 and pH – 7) levels. The first and second flasks were agitated on a shaker (150 rpm) at  $35^{\circ} \pm 2^{\circ}$  C for 15 minutes and 2 h, respectively. All pH adjustment were made using reagent grade HCl and NaOH. After the treatment time, the samples were centrifuged at 10000 rpm for 20 min at room temperature and supernatant liquid was used to estimate metal ion concentrations (GBC SensAA - AAS, Australia - Flame mode) (De et al., 2007). The biosorption experiments were repeated three times and the mean values were reported.

#### 2.8.Biosorption of Cu and Cr by heterotrophic bacterial study

The 5 mL of both 24 h cultures (bacterial strain 1 and 2) were inoculated into a 250 mL flask containing 150 mL of nutrient broth (pH - 7.0; Temperature -  $35^{\circ} \pm 2^{\circ}$  C; 150 rpm) supplemented with 50 ppm of copper. The inoculated flasks were incubated at  $35^{\circ} \pm 2^{\circ}$  C on a rotatory shaker (150 rpm) for 72 h. The same both cultures were used as a biosorbents in Cr treated process. The Cu and Cr removal was determined by analyzing the metal content of the medium. In 36 and 72 h, 5 mL of culture was withdrawn aseptically into a micro centrifuge tube and centrifuged at 10000 rpm for 15 min at 4° C. The collected supernatant was filtered through 0.22 µm pre-weighed nitro cellulose membrane filters and the filtrate was digested with 10% HNO<sub>3</sub> to estimate the copper and chromium in the supernatant All experiments were performed in triplicate and the mean value were reported. The metal removal rate was calculated using following formula.

% Metal adsorbed =  $(C_i - C_f) / C_i$  x 100

#### © 2024 IJRAR March 2024, Volume 11, Issue 1

Where,  $C_i$  and  $C_f$  are the initial and equilibrium metal ion concentrations (mg L<sup>-1</sup>), respectively. 3.RESULT.;

#### **3.1i)** Physiochemical studies

In oil contaminated water sample of post monsoon 2015, the mean values of pH, TDS, EC, DO, BOD, COD, TA, TH, Ca, Mg, Na, K, HCO<sub>3</sub>, CO<sub>3</sub>, Cl, SO<sub>4</sub>, N-NO<sub>2</sub>, O-PO<sub>4</sub> and oil/Greece were 7.6, 342.6, 580.7 (µS/cm), 6.3, 7.4, 11.3, 90.3, 81.9, 37.5, 44.4, 29.1, 20.6, 82.7, 0, 62.6, 47.2, 4.5, 4.7 and 6.5 mg/L, respectively..

#### **3.2Heavy metal studies**

In soil sample of post monsoon 2015, the mean values of Cd, Cr, Cu, Fe, Ni, Pb and Zn were 0.19, 0.10, 0.19, 1.07, 0.08, 0.11 and 0.62 mg/g, respectively. But in water sample of summer 2015, the range of Cd, Cr, Cu, Fe, Ni, Pb and Zn were 0.08 - 0.26, 0.06 - 0.12, 0.10 - 0.28, 0.41 - 1.57, BDL - 0.12, 0.06 - 0.12 and 0.31 - 1.08 mg/L, respectively.

#### **3.3**Microbiological studies

In water sample of post monsoon 2015, counts of TVC, TC, TS, FC, FS, VC, SAC, SHC and PC were in the range of 143000 - 91000, 1060 - 8400, 160 - 620, 210 - 910, 70 - 150, 80 - 130, 90 - 150 and 150 - 320 CFU/mL, respectively.

#### **3.4 Multi-metal resistant studies**

In chromium resistant study, a growth rate between 90-100% was observed for 86.5 % of the bacterial populations at 10 mM of Cr, whereas no population was growing at a growth rate of 0-80 % with 10 mM of Cr. At 50 mM of Cr, 53.5 % of the populations showed a growth rate of 81-90 % while 10 % of the population showed a growth rate of 0-80 %. were observed with a 71-80 % growth rate.

A growth rate between 91 - 100 % was observed for 91.5 % of the bacterial populations at 10 mM of Cu, whereas 16.5 % of population was growing at a growth rate of 0 - 80 % with 50 mM of Cu.

#### **3.5.Bio sorption studies**

In dry biomass study, at 5 ppm Cu treatment process, 57.6 % of Cu was observed by bacterial strain 1 in the pH 4 medium for 15 minutes time where as 62.4 % of Cu was observed at 2 h time.

In living cell study, copper removal by bacterial strain 1 were 27.6 and 36.4 % after 36 and 72 h of incubation, respectively. Chromium removal by bacterial strain 2 were 17.2 and 22.4 %, after 36 and 72 h of incubation, respectively. The dry biomass was act as an effective biosorbents than the living bio sorbents.

#### 1Physiochemical parameters in oil contaminated regions, Tiruchirappalli – March to May 2015 (Summer

|      |                      | e          | re                    | le         |      |            |             |                 |            |             |             | (mg        | Physioc<br>g/l or ppr | hemica<br>n = wate  | l param<br>er; mg/k    | eters<br>g = Sol        | il)                 |                           |                          |              |                        |                            |               |                   |
|------|----------------------|------------|-----------------------|------------|------|------------|-------------|-----------------|------------|-------------|-------------|------------|-----------------------|---------------------|------------------------|-------------------------|---------------------|---------------------------|--------------------------|--------------|------------------------|----------------------------|---------------|-------------------|
| S.No | Sampling<br>stations | Sample typ | Sample<br>name / natu | Sample coc | рН   | Ngm<br>Vgm | EC<br>µS/cm | Salinity<br>ppt | DO<br>mg/l | BOD<br>mg/L | COD<br>mg/L | TA<br>mg/L | HL<br>HL              | ${ m Ca}^{2+}$ mg/L | ${ m Mg}^{2+}$<br>mg/L | Na <sup>+</sup><br>mg/L | $\mathrm{K}^+$ mg/L | HCO3 <sup>-</sup><br>mg/L | CO3 <sup>-</sup><br>mg/L | CI -<br>mg/L | ${\rm SO_4}^{2-}$ mg/L | N-NO <sup>2-</sup><br>mg/L | O-PO4<br>mg/L | Oil - Gre<br>mg/L |
| 1.   | PRS                  | Water      | OCW                   | W1         | 8.2  | 635.8      | 1077.6      | 1               | 4.8        | 6.6         | 15.5        | 153.8      | 150.1                 | 71.6                | 78.5                   | 52.4                    | 41.5                | 142.8                     | 0                        | 124.3        | 94.5                   | 10.5                       | 8.5           | 12.8              |
| 2.   | SOS                  | Water      | OCW                   | W2         | 7.6  | 452.3      | 766.6       |                 | 5.7        | 7.2         | 13.4        | 120.5      | 111.9                 | 48.5                | 63.4                   | 41.6                    | 24.6                | 114.2                     | 0                        | 72.6         | 62.8                   | 7.2                        | 6.2           | 9.2               |
| 3.   | CHB                  | Water      | OCW                   | W3         | 7.8  | 247.7      | 419.8       |                 | 6.5        | 8.4         | 9.5         | 61.4       | 52.9                  | 21.5                | 31.4                   | 19.8                    | 15.4                | 58.5                      | 0                        | 51.8         | 32.6                   | 2.1                        | 3.4           | 4.8               |
| 4.   | CLB                  | Water      | OCW                   | W4         | 8.1  | 347        | 588.1       |                 | 4.9        | 6.7         | 11.2        | 78.8       | 87.3                  | 37.8                | 49.5                   | 27.3                    | 21.4                | 76.4                      | 0                        | 65.2         | 48.5                   | 4.6                        | 5.1           | 6.5               |
|      |                      | Su         | т                     |            | 31.7 | 1682.8     | 2852.2      | 1.0             | 21.9       | 28.9        | 49.6        | 414.5      | 402.2                 | 179.4               | 222.8                  | 141.1                   | 102.9               | 391.9                     | 0.0                      | 313.9        | 238.4                  | 24.4                       | 23.2          | 33.3              |
|      |                      | Aver       | age                   |            | 7.9  | 420.7      | 713.1       | 1.0             | 5.5        | 7.2         | 12.4        | 103.6      | 100.6                 | 44.9                | 55.7                   | 35.3                    | 25.7                | 98.0                      | 0.0                      | 78.5         | 59.6                   | 6.1                        | 5.8           | 8.3               |
|      |                      | Maxii      | тит                   |            | 8.2  | 635.8      | 1077.6      | 1.0             | 6.5        | 8.4         | 15.5        | 153.8      | 150.1                 | 71.6                | 78.5                   | 52.4                    | 41.5                | 142.8                     | 0.0                      | 124.3        | 94.5                   | 10.5                       | 8.5           | 12.8              |
|      |                      | Minir      | пит                   |            | 7.6  | 247.7      | 419.8       | 1.0             | 4.8        | 6.6         | 9.5         | 61.4       | 52.9                  | 21.5                | 31.4                   | 19.8                    | 15.4                | 58.5                      | 0.0                      | 51.8         | 32.6                   | 2.1                        | 3.4           | 4.8               |
|      |                      |            |                       |            |      |            |             |                 |            |             |             |            |                       |                     |                        |                         |                     |                           |                          |              |                        |                            |               |                   |
| 5.   | PRS                  | Soil       | OCS                   | S1         | 8.6  | 998.7      | 1692.7      | 1               | 7.1        | 8.2         | 19.8        | 201.4      | 200.4                 | 115.8               | 84.6                   | 116.5                   | 54.2                | 192.5                     | 0                        | 290.4        | 112.6                  | 11.2                       | 9.7           | 17.5              |
| 6.   | SOS                  | Soil       | OCS                   | S2         | 8.2  | 636.4      | 1078.6      | 1               | 5.4        | 7.4         | 17.2        | 136.5      | 149.4                 | 74.6                | 74.8                   | 52.4                    | 28.4                | 134.2                     | 0                        | 164.5        | 81.4                   | 8.1                        | 6.8           | 12.4              |
| 7.   | CHB                  | Soil       | OCS                   | S3         | 7.4  | 345        | 584.7       | 0               | 5.8        | 7.6         | 13.7        | 78.5       | 84.3                  | 38.7                | 45.6                   | 24.9                    | 18.8                | 71.6                      | 0                        | 84.6         | 42.6                   | 2.8                        | 4.2           | 7.8               |
| 8.   | CLB                  | Soil       | OCS                   | S4         | 7.8  | 481.8      | 816.6       | 0               | 6.2        | 8.1         | 14.6        | 123.8      | 115.4                 | 54.2                | 61.2                   | 37.8                    | 22.6                | 118.5                     | 0                        | 101.8        | 63.5                   | 5.2                        | 5.8           | 10.2              |
|      |                      | Su         | т                     |            | 32   | 2461.9     | 4172.7      | 2               | 24.5       | 31.3        | 65.3        | 540.2      | 549.5                 | 283.3               | 266.2                  | 231.6                   | 124.0               | 516.8                     | 0.0                      | 641.3        | 300.1                  | 27.3                       | 26.5          | 47.9              |
|      |                      | Aver       | age                   |            | 8    | 615.4      | 1043.2      | 0.5             | 6.12       | 7.82        | 16.32       | 135.05     | 137.37                | 70.82               | 66.55                  | 57.9                    | 31.0                | 129.2                     | 0.0                      | 160.3        | 75.0                   | 6.8                        | 6.6           | 12.0              |
|      |                      | Maxii      | тит                   |            | 8.6  | 998.7      | 1692.7      | 1               | 7.1        | 8.2         | 19.8        | 201.4      | 200.4                 | 115.8               | 84.6                   | 116.5                   | 54.2                | 192.5                     | 0.0                      | 290.4        | 112.6                  | 11.2                       | 9.7           | 17.5              |
|      |                      | Minir      | пит                   |            | 7.4  | 345        | 584.7       | 0               | 5.4        | 7.4         | 13.7        | 78.5       | 84.3                  | 38.7                | 45.6                   | 24.9                    | 18.8                | 71.6                      | 0.0                      | 84.6         | 42.6                   | 2.8                        | 4.2           | 7.8               |

PRS - Ponmalai Railway Shed; SOS - Senthaneerpuram Oil Shed; CHB - Chatram Bus Stand; CLB - Central Bus Stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

TDS – Total dissolved solids; EC – Electrical conductivity; Salinity; DO – Dissolved oxygen; BOD – Biological dissolved oxygen; TA – Total alkalinity; TH – Total hardness; Ca – Calcium; Mg – Magnesium; Na – Sodium; K – Potassium; HCO<sub>3</sub> – Bicarbonate; CO<sub>3</sub> – Carbonate; Cl – Chloride; SO<sub>4</sub> – Sulphate; N-NO2 – Nitrite; O-PO<sub>4</sub> – Ortho-phosphate; Oil & Gree – Oil & Gree e

APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. 19th edn, Washington, DC.

Vignesh, S., Dahms, HU., Emmanuel, KV., Gokul, MS., Muthukumar, K., Kim, BR., James, RA. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India, Environ monit and assess, 186 (3), 1875 – 1887.

#### Table 4.2. Trace metal concentrations in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon)

| S.No | Sampling stations | Sample | Sample | Sample | Trace metal parameters (mg/l or ppm = water; mg/kg = Soil) | Remarks | Reference |      |      |      |      |   |  |
|------|-------------------|--------|--------|--------|------------------------------------------------------------|---------|-----------|------|------|------|------|---|--|
|      | 1 0               | type   | name   | code   | Cd                                                         | Cr      | Cu        | Fe   | Ni   | Pb   | Zn   | 1 |  |
| 1.   | PRS               | Water  | OCW    | W1     | 0.17                                                       | 0.1     | 0.19      | 1.06 | 0.08 | 0.12 | 0.82 |   |  |
| 2.   | SOS               | Water  | OCW    | W2     | 0.11                                                       | 0.08    | 0.15      | 0.39 | 0.06 | 0.1  | 0.41 |   |  |
| 3.   | CHB               | Water  | OCW    | W3     | 0.08                                                       | BDL     | 0.1       | 0.22 | 0    | 0    | 0.2  |   |  |
| 4.   | CLB               | Water  | OCW    | W4     | 0.08                                                       | BDL     | 0.14      | 0.35 | 0    | 0.08 | 0.25 |   |  |
|      | Sum               | 0.44   | 0.18   | 0.58   | 2.02                                                       | 0.14    | 0.30      | 1.68 |      |      |      |   |  |
|      | Average           | 0.11   | 0.09   | 0.15   | 0.51                                                       | 0.04    | 0.08      | 0.42 |      |      |      |   |  |
|      | Maximum           | 0.17   | 0.10   | 0.19   | 1.06                                                       | 0.08    | 0.12      | 0.82 |      |      |      |   |  |
|      | Minimum           | 0.08   | 0.08   | 0.10   | 0.22                                                       | 0.00    | 0.00      | 0.20 |      |      |      |   |  |
|      |                   |        |        |        |                                                            |         |           |      |      |      |      |   |  |
| 5.   | PRS               | Soil   | OCS    | S1     | 0.28                                                       | 0.12    | 0.24      | 1.75 | 0.12 | 0.11 | 0.84 |   |  |
| 6.   | SOS               | Soil   | OCS    | S2     | 0.16                                                       | 0.1     | 0.2       | 0.72 | 0.08 | 0.1  | 0.46 |   |  |
| 7.   | CHB               | Soil   | OCS    | S3     | 0.12                                                       | 0.08    | 0.1       | 0.33 | 0    | 0.08 | 0.21 |   |  |
| 8.   | CLB               | Soil   | OCS    | S4     | 0.11                                                       | BDL     | 0.15      | 0.56 | 0.06 | 0.08 | 0.32 |   |  |
|      | Sum               | 0.67   | 0.30   | 0.69   | 3.36                                                       | 0.26    | 0.37      | 1.83 |      |      |      |   |  |
|      | Average           | 0.17   | 0.10   | 0.17   | 0.84                                                       | 0.07    | 0.09      | 0.46 |      |      |      |   |  |
|      | Maximum           | 0.28   | 0.12   | 0.24   | 1.75                                                       | 0.12    | 0.11      | 0.84 |      |      |      |   |  |
|      | Minimum           | 0.11   | 0.08   | 0.10   | 0.33                                                       | 0.00    | 0.08      | 0.21 |      |      |      |   |  |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

BDL - Below detectable limit (Not Determined); Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron; Ni - Nickel; Pb - Lead; Zn - Zinc

Amir H. Charkhabi, Mohamad Sakizadeh and Gholamreza Rafiee, (2005). Seasonal Fluctuation in Heavy Metal Pollution in Iran's Siahroud GW. Environ Sci & Pollut Res, 12 (5) 264 – 270.

N. Pourang, A. Nikouyan and J. H. Dennis, (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian gulf. Environmental Monitoring and Assessment, 109: 293–316.

S. Dhanakumar, K. Rutharvel Murthy, G. Solaraj, R. Mohanraj, (2013). Heavy-Metal Fractionation in Surface Sediments of the Cauvery GW Estuarine Region, Southeastern Coast of India. Arch Environ Contam Toxicol, 65(1), 14 - 23.

Table 4.3 Microbiological levels/ counts in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon)

| S.No | Sampling | Sample  | Sample | Sample |        |       | N<br>(CF | Microbiolo<br>FU/ml = wa | gical para<br>ater; CFU | ameters<br>/g = Soi | l)  |       |       | Rem<br>arks | Refer |
|------|----------|---------|--------|--------|--------|-------|----------|--------------------------|-------------------------|---------------------|-----|-------|-------|-------------|-------|
|      | Stations | type    | nume   | eode   | TVC    | TC    | TS       | FC                       | FS                      | VC                  | SAC | SHC   | PC    | uns         | ence  |
| Wat  | er       |         |        |        |        |       |          |                          |                         |                     |     |       |       |             |       |
| 1.   | PRS      | Water   | OCW    | W1     | 91000  | 8400  | 620      | 910                      | 150                     | 130                 | 110 | 150   | 320   |             |       |
| 2.   | SOS      | Water   | OCW    | W2     | 62000  | 3200  | 470      | 670                      | 120                     | 90                  | 90  | 120   | 240   |             |       |
| 3.   | CHB      | Water   | OCW    | W3     | 14300  | 1060  | 160      | 210                      | 70                      | 80                  | 80  | 90    | 150   |             |       |
| 4.   | CLB      | Water   | OCW    | W4     | 21600  | 1640  | 240      | 320                      | 100                     | 90                  | 100 | 110   | 180   |             |       |
|      |          | Sum     |        |        | 188900 | 14300 | 1490     | 2110                     | 440                     | 390                 | 380 | 470   | 890   |             |       |
|      |          | Average |        |        | 47225  | 3575  | 372.5    | 527.5                    | 110                     | 97.5                | 95  | 117.5 | 222.5 |             |       |
|      |          | Maximum |        |        | 91000  | 8400  | 620      | 910                      | 150                     | 130                 | 110 | 150   | 320   |             |       |
|      |          | Minimum |        |        | 14300  | 1060  | 160      | 210                      | 70                      | 80                  | 80  | 90    | 150   |             |       |
|      |          |         |        |        |        |       |          |                          |                         |                     |     |       |       |             |       |
| 5.   | PRS      | Soil    | OCS    | S1     | 156000 | 10100 | 940      | 1030                     | 220                     | 150                 | 130 | 190   | 640   |             |       |
| 6.   | SOS      | Soil    | OCS    | S2     | 92000  | 4100  | 720      | 850                      | 150                     | 130                 | 110 | 160   | 460   |             |       |
| 7.   | CHB      | Soil    | OCS    | S3     | 38000  | 1920  | 200      | 260                      | 90                      | 90                  | 90  | 100   | 240   |             |       |
| 8.   | CLB      | Soil    | OCS    | S4     | 61000  | 3300  | 310      | 580                      | 130                     | 110                 | 110 | 120   | 340   |             |       |
|      |          | Sum     |        |        | 347000 | 19420 | 2170     | 2720                     | 590                     | 480                 | 440 | 570   | 1680  |             |       |
|      |          | Average |        |        | 86750  | 4855  | 542.5    | 680                      | 147.5                   | 120                 | 110 | 142.5 | 420   |             |       |
|      |          | Maximum |        |        | 156000 | 10100 | 940      | 1030                     | 220                     | 150                 | 130 | 190   | 640   |             |       |
|      |          | Minimum |        |        | 38000  | 1920  | 200      | 260                      | 90                      | 90                  | 90  | 100   | 240   |             |       |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

OCW - Oil Contaminated Water; OCS - Oil Contaminated Soil

TVC – Total viable count; TC – Total coliforms; TS – Total Streptococci; FC – Fecal coliforms; FS – Fecal Streptococci; VC – Vibrio count; SAC – Salmonella count; SHC – Shigella count; PC – Pseudomonas count;

Clark A, Turner T, Dorothy KP, Goutham J, Kalavati C, Rajanna B (2003) Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety 56: 390–397. doi: 10.1016/S0147-6513(03)00098-8. Pubmed: 14575679.

Vignesh S, Muthukumar K, James RA (2012) Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin 64: 790–800. doi: 10.1016/j.marpolbul.2012.01.015. Pubmed: 22321173.

Vignesh S, Dahms HU, Emmanuel KV, Gokul MS, Muthukumar K, Kim BR, James RA (2014) Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment 186(3): 1875–1887. doi: 10.1007/s10661-013-3501-z. Pubmed: 24292984.

Table 4.4. Trace metal concentrations in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon

| C Ma  | Comuling stations | Sample  | Sample | Sample |      | Trace met | al parameters | (mg/l or ppm | = water; mg/ | kg = Soil) |      | Domontro | Defense og |
|-------|-------------------|---------|--------|--------|------|-----------|---------------|--------------|--------------|------------|------|----------|------------|
| 5.INO | Sampling stations | type    | name   | code   | Cd   | Cr        | Cu            | Fe           | Ni           | Pb         | Zn   | Remarks  | Reference  |
| 1.    | PRS               | Water   | OCW    | W1     | 0.22 | 0.1       | 0.21          | 1.24         | 0.1          | 0.1        | 0.94 |          |            |
| 2.    | SOS               | Water   | OCW    | W2     | 0.12 | 0.08      | 0.13          | 0.48         | 0.08         | 0.08       | 0.54 |          |            |
| 3.    | CHB               | Water   | OCW    | W3     | 0.06 | 0.08      | 0.08          | 0.25         | 0            | 0          | 0.26 |          |            |
| 4.    | CLB               | Water   | OCW    | W4     | 0.08 | 0.08      | 0.12          | 0.42         | 0            | 0.08       | 0.35 |          |            |
|       |                   | Sum     |        |        | 0.48 | 0.34      | 0.54          | 2.39         | 0.18         | 0.26       | 2.09 |          |            |
|       |                   | Average |        |        | 0.12 | 0.09      | 0.14          | 0.60         | 0.05         | 0.07       | 0.52 |          |            |
|       |                   | Maximum |        |        | 0.22 | 0.10      | 0.21          | 1.24         | 0.10         | 0.10       | 0.94 |          |            |
|       |                   | Minimum |        |        | 0.06 | 0.08      | 0.08          | 0.25         | 0.00         | 0.00       | 0.26 |          |            |
|       |                   |         |        |        |      |           |               |              |              |            |      |          |            |
| 5.    | PRS               | Soil    | OCS    | S1     | 0.35 | 0.15      | 0.31          | 2.14         | 0.14         | 0.15       | 1.12 |          |            |
| 6.    | SOS               | Soil    | OCS    | S2     | 0.19 | 0.1       | 0.18          | 0.98         | 0.1          | 0.11       | 0.63 |          |            |
| 7.    | CHB               | Soil    | OCS    | S3     | 0.1  | 0.06      | 0.12          | 0.48         | 0            | 0.08       | 0.3  |          |            |
| 8.    | CLB               | Soil    | OCS    | S4     | 0.12 | 0.08      | 0.16          | 0.67         | 0.08         | 0.1        | 0.42 |          |            |
|       |                   | Sum     |        |        | 0.76 | 0.39      | 0.77          | 4.27         | 0.32         | 0.44       | 2.47 |          |            |
|       |                   | Average |        |        | 0.19 | 0.10      | 0.19          | 1.07         | 0.08         | 0.11       | 0.62 |          |            |
|       |                   | Maximum |        |        | 0.35 | 0.15      | 0.31          | 2.14         | 0.14         | 0.15       | 1.12 |          |            |
|       |                   | Minimum |        |        | 0.10 | 0.06      | 0.12          | 0.48         | 0.00         | 0.08       | 0.30 |          |            |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

BDL - Below detectable limit (Not Determined); Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron; Ni - Nickel; Pb - Lead; Zn - Zinc

Amir H. Charkhabi, Mohamad Sakizadeh and Gholamreza Rafiee, (2005). Seasonal Fluctuation in Heavy Metal Pollution in Iran's Siahroud GW. Environ Sci & Pollut Res, 12 (5) 264 – 270.

N. Pourang, A. Nikouyan and J. H. Dennis, (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian gulf. Environmental Monitoring and Assessment, 109: 293–316.

S. Dhanakumar, K. Rutharvel Murthy, G. Solaraj, R. Mohanraj, (2013). Heavy-Metal Fractionation in Surface Sediments of the Cauvery GW Estuarine Region, Southeastern Coast of India. Arch Environ Contam Toxicol, 65(1), 14 - 23.

#### Table 4.5. Physiochemical parameters in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon)

|      |                      | e          | re                    | le         |      |            |             |                 |            |             |             | (mg        | Physioc<br>g/l or ppi | hemica<br>n = wat        | l paran<br>er; mg/k      | neters $g = So$         | il)                    |                           |                          |              |                        |                            |               |                   |
|------|----------------------|------------|-----------------------|------------|------|------------|-------------|-----------------|------------|-------------|-------------|------------|-----------------------|--------------------------|--------------------------|-------------------------|------------------------|---------------------------|--------------------------|--------------|------------------------|----------------------------|---------------|-------------------|
| S.No | Sampling<br>stations | Sample typ | Sample<br>name / natu | Sample coo | рН   | Ngm<br>Vgm | EC<br>μS/cm | Salinity<br>ppt | DO<br>Mg/l | BOD<br>mg/L | COD<br>mg/L | TA<br>mg/L | T/gm<br>HT            | Ca <sup>2+</sup><br>mg/L | Mg <sup>2+</sup><br>mg/L | Na <sup>+</sup><br>mg/L | $\mathrm{K}^+$<br>mg/L | HCO3 <sup>-</sup><br>mg/L | CO3 <sup>-</sup><br>mg/L | CI -<br>mg/L | ${\rm SO_4}^{2-}$ mg/L | N-NO <sup>2-</sup><br>mg/L | O-PO4<br>mg/L | Oil - Gre<br>mg/L |
| 1.   | PRS                  | Water      | OCW                   | W1         | 7.8  | 529.4      | 897.3       |                 | 6.4        | 7.2         | 14.2        | 132.5      | 124.9                 | 59.5                     | 65.4                     | 42.5                    | 32.8                   | 121.8                     | 0                        | 106.5        | 76.5                   | 8.2                        | 6.8           | 9.4               |
| 2.   | SOS                  | Water      | OCW                   | W2         | 7.4  | 375.3      | 636.1       |                 | 6.8        | 8.4         | 11.5        | 105.4      | 92.3                  | 42.1                     | 50.2                     | 33.8                    | 19.8                   | 98.5                      | 0                        | 61.4         | 50.4                   | 4.6                        | 5.1           | 6.4               |
| 3.   | CHB                  | Water      | OCW                   | W3         | 8.1  | 182.3      | 309.0       |                 | 6.2        | 7.6         | 8.5         | 49.8       | 42.1                  | 17.5                     | 24.6                     | 16.4                    | 11.5                   | 42.5                      | 0                        | 33.6         | 22.4                   | 1.8                        | 2.6           | 3.8               |
| 4.   | CLB                  | Water      | OCW                   | W4         | 7.2  | 283.5      | 480.5       |                 | 5.8        | 6.4         | 10.8        | 73.4       | 68.2                  | 30.8                     | 37.4                     | 23.8                    | 18.4                   | 67.9                      | 0                        | 48.7         | 39.4                   | 3.4                        | 4.3           | 6.2               |
|      |                      | Su         | т                     |            | 30.5 | 1370.5     | 2322.9      | 0.0             | 25.2       | 29.6        | 45.0        | 361.1      | 327.5                 | 149.9                    | 177.6                    | 116.5                   | 82.5                   | 330.7                     | 0.0                      | 250.2        | 188.7                  | 18.0                       | 18.8          | 25.8              |
|      |                      | Aver       | age                   |            | 7.6  | 342.6      | 580.7       | 0.0             | 6.3        | 7.4         | 11.3        | 90.3       | 81.9                  | 37.5                     | 44.4                     | 29.1                    | 20.6                   | 82.7                      | 0.0                      | 62.6         | 47.2                   | 4.5                        | 4.7           | 6.5               |
|      |                      | Maxi       | тит                   |            | 8.1  | 529.4      | 897.3       | 0.0             | 6.8        | 8.4         | 14.2        | 132.5      | 124.9                 | 59.5                     | 65.4                     | 42.5                    | 32.8                   | 121.8                     | 0.0                      | 106.5        | 76.5                   | 8.2                        | 6.8           | 9.4               |
|      |                      | Minir      | тит                   |            | 7.2  | 182.3      | 309.0       | 0.0             | 5.8        | 6.4         | 8.5         | 49.8       | 42.1                  | 17.5                     | 24.6                     | 16.4                    | 11.5                   | 42.5                      | 0.0                      | 33.6         | 22.4                   | 1.8                        | 2.6           | 3.8               |
|      |                      |            |                       |            |      |            |             |                 |            |             |             |            |                       |                          |                          |                         |                        |                           |                          |              |                        |                            |               |                   |
| 5.   | PRS                  | Soil       | OCS                   | S1         | 8.2  | 814.5      | 1380.5      | 1               | 6.4        | 7.8         | 16.5        | 168.4      | 175.1                 | 98.7                     | 76.4                     | 92.4                    | 44.8                   | 162.8                     | 0                        | 212.5        | 98.5                   | 10.5                       | 8.5           | 14.6              |
| 6.   | SOS                  | Soil       | OCS                   | S2         | 7.9  | 531.9      | 901.5       | 0               | 5.8        | 7.1         | 13.4        | 124.3      | 121.6                 | 60.2                     | 61.4                     | 45.6                    | 24.3                   | 118.7                     | 0                        | 126.8        | 72.6                   | 6.7                        | 6.2           | 10.5              |
| 7.   | CHB                  | Soil       | OCS                   | S3         | 6.8  | 266.8      | 452.2       | 0               | 6.5        | 8.2         | 10.8        | 62.5       | 63                    | 29.4                     | 33.6                     | 20.8                    | 15.4                   | 60.5                      | 0                        | 61.7         | 30.4                   | 2.2                        | 3.4           | 6.8               |
| 8.   | CLB                  | Soil       | OCS                   | S4         | 7.5  | 392.5      | 665.3       | 0               | 6.9        | 8.4         | 12.6        | 103.4      | 94.4                  | 41.6                     | 52.8                     | 30.5                    | 20.8                   | 99.4                      | 0                        | 74.6         | 53.8                   | 4.4                        | 5.2           | 8.7               |
|      |                      | Su         | т                     |            | 30.4 | 2005.7     | 3399.5      | 1               | 25.6       | 31.5        | 53.3        | 458.6      | 454.1                 | 229.9                    | 224.2                    | 189.3                   | 105.3                  | 441.4                     | 0.0                      | 475.6        | 255.3                  | 23.8                       | 23.3          | 40.6              |
|      |                      | Aver       | age                   |            | 7.6  | 501.42     | 849.9       | 0.25            | 6.4        | 7.87        | 13.32       | 114.65     | 113.52                | 57.475                   | 56.05                    | 47.3                    | 26.3                   | 110.4                     | 0.0                      | 118.9        | 63.8                   | 6.0                        | 5.8           | 10.2              |
|      |                      | Maxi       | тит                   |            | 8.2  | 814.5      | 1380.5      | 1               | 6.9        | 8.4         | 16.5        | 168.4      | 175.1                 | 98.7                     | 76.4                     | 92.4                    | 44.8                   | 162.8                     | 0.0                      | 212.5        | 98.5                   | 10.5                       | 8.5           | 14.6              |
|      |                      | Minir      | тит                   |            | 6.8  | 266.8      | 452.2       | 0               | 5.8        | 7.1         | 10.8        | 62.5       | 63                    | 29.4                     | 33.6                     | 20.8                    | 15.4                   | 60.5                      | 0.0                      | 61.7         | 30.4                   | 2.2                        | 3.4           | 6.8               |

PRS - Ponmalai Railway Shed; SOS - Senthaneerpuram Oil Shed; CHB - Chatram Bus Stand; CLB - Central Bus Stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

TDS – Total dissolved solids; EC – Electrical conductivity; Salinity; DO – Dissolved oxygen; BOD – Biological dissolved oxygen; TA – Total alkalinity; TH – Total hardness; Ca – Calcium; Mg – Magnesium; Na – Sodium; K – Potassium; HCO<sub>3</sub> – Bicarbonate; CO<sub>3</sub> – Carbonate; Cl – Chloride; SO<sub>4</sub> – Sulphate; N-NO2 – Nitrite; O-PO<sub>4</sub> – Ortho-phosphate; Oil & Gre – Oil & Greece APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. 19th edn, Washington, DC.

Vignesh, S., Dahms, HU., Emmanuel, KV., Gokul, MS., Muthukumar, K., Kim, BR., James, RA. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India, Environ monit and assess, 186 (3), 1875 – 1887.

| C Me  | Samulina stations | Sample  | Sample | Sample |      | Trace me | tal parameters | (mg/l or ppm | n = water; mg/ | 'kg = Soil) |      | Domontro | Deference |
|-------|-------------------|---------|--------|--------|------|----------|----------------|--------------|----------------|-------------|------|----------|-----------|
| 5.INO | Sampning stations | type    | name   | code   | Cd   | Cr       | Cu             | Fe           | Ni             | Pb          | Zn   | Remarks  | Reference |
| 1.    | PRS               | Water   | OCW    | W1     | 0.22 | 0.1      | 0.21           | 1.24         | 0.1            | 0.1         | 0.94 |          |           |
| 2.    | SOS               | Water   | OCW    | W2     | 0.12 | 0.08     | 0.13           | 0.48         | 0.08           | 0.08        | 0.54 |          |           |
| 3.    | CHB               | Water   | OCW    | W3     | 0.06 | 0.08     | 0.08           | 0.25         | 0              | 0           | 0.26 |          |           |
| 4.    | CLB               | Water   | OCW    | W4     | 0.08 | 0.08     | 0.12           | 0.42         | 0              | 0.08        | 0.35 |          |           |
|       |                   | Sum     |        |        | 0.48 | 0.34     | 0.54           | 2.39         | 0.18           | 0.26        | 2.09 |          |           |
|       |                   | Average |        |        | 0.12 | 0.09     | 0.14           | 0.60         | 0.05           | 0.07        | 0.52 |          |           |
|       |                   | Maximum | !      |        | 0.22 | 0.10     | 0.21           | 1.24         | 0.10           | 0.10        | 0.94 |          |           |
|       |                   | Minimum |        |        | 0.06 | 0.08     | 0.08           | 0.25         | 0.00           | 0.00        | 0.26 |          |           |
|       |                   |         |        |        |      |          |                |              |                |             |      |          |           |
| 5.    | PRS               | Soil    | OCS    | S1     | 0.35 | 0.15     | 0.31           | 2.14         | 0.14           | 0.15        | 1.12 |          |           |
| 6.    | SOS               | Soil    | OCS    | S2     | 0.19 | 0.1      | 0.18           | 0.98         | 0.1            | 0.11        | 0.63 |          |           |
| 7.    | CHB               | Soil    | OCS    | S3     | 0.1  | 0.06     | 0.12           | 0.48         | 0              | 0.08        | 0.3  |          |           |
| 8.    | CLB               | Soil    | OCS    | S4     | 0.12 | 0.08     | 0.16           | 0.67         | 0.08           | 0.1         | 0.42 |          |           |
|       |                   | Sum     |        |        | 0.76 | 0.39     | 0.77           | 4.27         | 0.32           | 0.44        | 2.47 |          |           |
|       |                   | Average |        |        | 0.19 | 0.10     | 0.19           | 1.07         | 0.08           | 0.11        | 0.62 |          |           |
|       |                   | Maximum | !      |        | 0.35 | 0.15     | 0.31           | 2.14         | 0.14           | 0.15        | 1.12 |          |           |
|       |                   | Minimum |        |        | 0.10 | 0.06     | 0.12           | 0.48         | 0.00           | 0.08        | 0.30 |          |           |

#### Table 4.6 Trace metal concentrations in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon)

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

BDL - Below detectable limit (Not Determined); Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron; Ni - Nickel; Pb - Lead; Zn - Zinc

Amir H. Charkhabi, Mohamad Sakizadeh and Gholamreza Rafiee, (2005). Seasonal Fluctuation in Heavy Metal Pollution in Iran's Siahroud GW. Environ Sci & Pollut Res, 12 (5) 264 – 270.

N. Pourang, A. Nikouyan and J. H. Dennis, (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian gulf. Environmental Monitoring and Assessment, 109: 293–316.

S. Dhanakumar, K. Rutharvel Murthy, G. Solaraj, R. Mohanraj, (2013). Heavy-Metal Fractionation in Surface Sediments of the Cauvery GW Estuarine Region, Southeastern Coast of India. Arch Environ Contam Toxicol, 65 (1), 14 – 23.

| S.No | Sampling | Sample  | Sample | Sample |        |       | (     | Microbiolo<br>CFU/ml = w | gical paran<br>ater; CFU/ | meters<br>g = Soil) |     |       |       | Rem  | Refer |
|------|----------|---------|--------|--------|--------|-------|-------|--------------------------|---------------------------|---------------------|-----|-------|-------|------|-------|
|      | stations | type    | name   | code   | TVC    | TC    | TS    | FC                       | FS                        | VC                  | SAC | SHC   | PC    | aiks | ence  |
| Wate | r        |         |        |        |        |       |       |                          |                           |                     |     |       |       |      |       |
| 1.   | PRS      | Water   | OCW    | W1     | 91000  | 8400  | 620   | 910                      | 150                       | 130                 | 110 | 150   | 320   |      |       |
| 2.   | SOS      | Water   | OCW    | W2     | 62000  | 3200  | 470   | 670                      | 120                       | 90                  | 90  | 120   | 240   |      |       |
| 3.   | CHB      | Water   | OCW    | W3     | 14300  | 1060  | 160   | 210                      | 70                        | 80                  | 80  | 90    | 150   |      |       |
| 4.   | CLB      | Water   | OCW    | W4     | 21600  | 1640  | 240   | 320                      | 100                       | 90                  | 100 | 110   | 180   |      |       |
|      |          | Sum     |        |        | 188900 | 14300 | 1490  | 2110                     | 440                       | 390                 | 380 | 470   | 890   |      |       |
|      |          | Average |        |        | 47225  | 3575  | 372.5 | 527.5                    | 110                       | 97.5                | 95  | 117.5 | 222.5 |      |       |
|      |          | Maximum |        |        | 91000  | 8400  | 620   | 910                      | 150                       | 130                 | 110 | 150   | 320   |      |       |
|      |          | Minimum |        |        | 14300  | 1060  | 160   | 210                      | 70                        | 80                  | 80  | 90    | 150   |      |       |
|      |          |         |        |        |        |       |       |                          |                           |                     |     |       |       |      |       |
| 5.   | PRS      | Soil    | OCS    | S1     | 156000 | 10100 | 940   | 1030                     | 220                       | 150                 | 130 | 190   | 640   |      |       |
| 6.   | SOS      | Soil    | OCS    | S2     | 92000  | 4100  | 720   | 850                      | 150                       | 130                 | 110 | 160   | 460   |      |       |
| 7.   | CHB      | Soil    | OCS    | S3     | 38000  | 1920  | 200   | 260                      | 90                        | 90                  | 90  | 100   | 240   |      |       |
| 8.   | CLB      | Soil    | OCS    | S4     | 61000  | 3300  | 310   | 580                      | 130                       | 110                 | 110 | 120   | 340   |      |       |
|      |          | Sum     |        |        | 347000 | 19420 | 2170  | 2720                     | 590                       | 480                 | 440 | 570   | 1680  |      |       |
|      |          | Average |        |        | 86750  | 4855  | 542.5 | 680                      | 147.5                     | 120                 | 110 | 142.5 | 420   |      |       |
|      |          | Maximum |        |        | 156000 | 10100 | 940   | 1030                     | 220                       | 150                 | 130 | 190   | 640   |      |       |
|      |          | Minimum |        |        | 38000  | 1920  | 200   | 260                      | 90                        | 90                  | 90  | 100   | 240   |      |       |

#### Table 4.7 Microbiological levels/ counts in oil contaminated regions, Tiruchirappalli – January to February 2015 (Post monsoon)

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

TVC – Total viable count; TC – Total coliforms; TS – Total Streptococci; FC – Fecal coliforms; FS – Fecal Streptococci; VC – Vibrio count; SAC – Salmonella count; SHC – Shigella count; PC – Pseudomonas count;

Clark A, Turner T, Dorothy KP, Goutham J, Kalavati C, Rajanna B (2003) Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety 56: 390–397. doi: 10.1016/S0147-6513(03)00098-8. Pubmed: 14575679.

Vignesh S, Muthukumar K, James RA (2012) Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin 64: 790–800. doi: 10.1016/j.marpolbul.2012.01.015. Pubmed: 22321173.

Vignesh S, Dahms HU, Emmanuel KV, Gokul MS, Muthukumar K, Kim BR, James RA (2014) Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment 186(3): 1875–1887. doi: 10.1007/s10661-013-3501-z. Pubmed: 24292984.

|      |                      | Эс         | Ire                   | de         |      |             |             |                 |            |             |             | (mg        | Physioc<br>g/l or ppr | hemica<br>n = wate  | l param<br>er; mg/k | neters<br>g = So        | il)                 |                           |                          |              |                        |                            |               |                   |
|------|----------------------|------------|-----------------------|------------|------|-------------|-------------|-----------------|------------|-------------|-------------|------------|-----------------------|---------------------|---------------------|-------------------------|---------------------|---------------------------|--------------------------|--------------|------------------------|----------------------------|---------------|-------------------|
| S.No | Sampling<br>stations | Sample typ | Sample<br>name / natu | Sample coo | рН   | TDS<br>Mg/I | EC<br>μS/cm | Salinity<br>ppt | DO<br>mg/l | BOD<br>mg/L | COD<br>mg/L | TA<br>mg/L | HT<br>HT              | ${ m Ca}^{2+}$ mg/L | ${ m Mg}^{2+}$ mg/L | Na <sup>+</sup><br>mg/L | $\mathrm{K}^+$ mg/L | HCO3 <sup>-</sup><br>mg/L | CO3 <sup>-</sup><br>mg/L | Cl -<br>mg/L | ${\rm SO_4}^{2-}$ mg/L | N-NO <sup>2-</sup><br>mg/L | O-PO4<br>mg/L | Oil - Gre<br>mg/L |
| 1.   | PRS                  | Water      | OCW                   | W1         | 8.2  | 439.8       | 745.4       | 0               | 5.5        | 6.4         | 12.5        | 110.2      | 104.6                 | 47.2                | 57.4                | 34.6                    | 26.4                | 102.8                     | 0                        | 84.5         | 64.5                   | 7.1                        | 5.9           | 7.4               |
| 2.   | SOS                  | Water      | OCW                   | W2         | 7.6  | 309.3       | 524.2       | 0               | 6.2        | 7.4         | 10.2        | 84.6       | 78                    | 38.5                | 39.5                | 25.8                    | 17.2                | 80.4                      | 0                        | 52.4         | 38.4                   | 3.5                        | 4.2           | 5.2               |
| 3.   | CHB                  | Water      | OCW                   | W3         | 7.9  | 140.2       | 237.6       | 0               | 5.7        | 6.9         | 7.4         | 35.8       | 32.6                  | 14.2                | 18.4                | 12.4                    | 9.5                 | 30.6                      | 0                        | 23.8         | 18.4                   | 1.5                        | 2             | 3                 |
| 4.   | CLB                  | Water      | OCW                   | W4         | 7.5  | 227.8       | 386.1       | 0               | 6.3        | 7.1         | 9.5         | 58.4       | 54.2                  | 24.6                | 29.6                | 20.9                    | 14.8                | 52.5                      | 0                        | 40.3         | 30.2                   | 2.4                        | 3.1           | 4.8               |
|      |                      | Sui        | т                     |            | 31.2 | 1117.1      | 1893.4      | 0.0             | 23.7       | 27.8        | 39.6        | 289.0      | 269.4                 | 124.5               | 144.9               | 93.7                    | 67.9                | 266.3                     | 0.0                      | 201.0        | 151.5                  | 14.5                       | 15.2          | 20.4              |
|      |                      | Aver       | age                   |            | 7.8  | 279.3       | 473.3       | 0.0             | 5.9        | 7.0         | 9.9         | 72.3       | 67.4                  | 31.1                | 36.2                | 23.4                    | 17.0                | 66.6                      | 0.0                      | 50.3         | 37.9                   | 3.6                        | 3.8           | 5.1               |
|      |                      | Maxir      | пит                   |            | 8.2  | 439.8       | 745.4       | 0.0             | 6.3        | 7.4         | 12.5        | 110.2      | 104.6                 | 47.2                | 57.4                | 34.6                    | 26.4                | 102.8                     | 0.0                      | 84.5         | 64.5                   | 7.1                        | 5.9           | 7.4               |
|      |                      | Minin      | пит                   |            | 7.5  | 140.2       | 237.6       | 0.0             | 5.5        | 6.4         | 7.4         | 35.8       | 32.6                  | 14.2                | 18.4                | 12.4                    | 9.5                 | 30.6                      | 0.0                      | 23.8         | 18.4                   | 1.5                        | 2.0           | 3.0               |
|      |                      |            |                       |            |      |             |             |                 |            |             |             |            |                       |                     |                     |                         |                     |                           |                          |              |                        |                            |               |                   |
| 5.   | PRS                  | Soil       | OCS                   | S1         | 7.9  | 675.6       | 1145.1      | 1               | 6.8        | 7.6         | 13.2        | 140.2      | 138.2                 | 79.8                | 58.4                | 80.4                    | 35.4                | 132.4                     | 0                        | 184.2        | 80.6                   | 8.2                        | 6.8           | 10.5              |
| 6.   | SOS                  | Soil       | OCS                   | S2         | 7.5  | 425.6       | 721.4       | 0               | 5.5        | 7.4         | 11.8        | 99.5       | 91.7                  | 46.5                | 45.2                | 31.6                    | 20.1                | 95.4                      | 0                        | 108.5        | 58.4                   | 5.4                        | 5.1           | 7.4               |
| 7.   | CHB                  | Soil       | OCS                   | S3         | 8.2  | 211.9       | 359.2       | 0               | 7.2        | 8.6         | 8.4         | 51.2       | 49.8                  | 23.4                | 26.4                | 15.4                    | 12.6                | 43.5                      | 0                        | 53.4         | 23.4                   | 1.8                        | 2.6           | 4.1               |
| 8.   | CLB                  | Soil       | OCS                   | S4         | 7.4  | 317.7       | 538.5       | 0               | 7.6        | 8.4         | 10.6        | 86.4       | 77.3                  | 36.8                | 40.5                | 26.4                    | 16.4                | 78.2                      | 0                        | 60.6         | 41.5                   | 3.4                        | 4.5           | 6.5               |
|      |                      | Su         | m                     |            | 31   | 1630.8      | 2764.1      | 1.0             | 27.1       | 32.0        | 44.0        | 377.3      | 357.0                 | 186.5               | 170.5               | 153.8                   | 84.5                | 349.5                     | 0.0                      | 406.7        | 203.9                  | 18.8                       | 19.0          | 28.5              |
|      |                      | Aver       | age                   |            | 7.75 | 407.7       | 691.0       | 0.3             | 6.8        | 8.0         | 11.0        | 94.3       | 89.3                  | 46.6                | 42.6                | 38.5                    | 21.1                | 87.4                      | 0.0                      | 101.7        | 51.0                   | 4.7                        | 4.8           | 7.1               |
|      |                      | Maxir      | пит                   |            | 8.2  | 675.6       | 1145.1      | 1.0             | 7.6        | 8.6         | 13.2        | 140.2      | 138.2                 | 79.8                | 58.4                | 80.4                    | 35.4                | 132.4                     | 0.0                      | 184.2        | 80.6                   | 8.2                        | 6.8           | 10.5              |
|      |                      | Minin      | пит                   |            | 7.4  | 211.9       | 359.2       | 0.0             | 5.5        | 7.4         | 8.4         | 51.2       | 49.8                  | 23.4                | 26.4                | 15.4                    | 12.6                | 43.5                      | 0.0                      | 53.4         | 23.4                   | 1.8                        | 2.6           | 4.1               |

#### Table 4.8. Physiochemical parameters in oil contaminated regions, Tiruchirappalli – June to August 2015 (Premonsoon)

PRS - Ponmalai Railway Shed; SOS - Senthaneerpuram Oil Shed; CHB - Chatram Bus Stand; CLB - Central Bus Stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

TDS – Total dissolved solids; EC – Electrical conductivity; Salinity; DO – Dissolved oxygen; BOD – Biological dissolved oxygen; TA – Total alkalinity; TH – Total hardness; Ca – Calcium; Mg – Magnesium; Na – Sodium; K – Potassium; HCO<sub>3</sub> – Bicarbonate; CO<sub>3</sub> – Carbonate; Cl – Chloride; SO<sub>4</sub> – Sulphate; N-NO2 – Nitrite; O-PO<sub>4</sub> – Ortho-phosphate; Oil & Greece

APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. 19th edn, Washington, DC.

Vignesh, S., Dahms, HU., Emmanuel, KV., Gokul, MS., Muthukumar, K., Kim, BR., James, RA. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India, Environ monit and assess, 186 (3), 1875 – 1887.

| S No  | Sompling stations | Sample  | Sample | Sample |      | Trace me | tal parameters | (mg/l or ppm | = water; mg/ | kg = Soil) |      | Domoriza | Deference |
|-------|-------------------|---------|--------|--------|------|----------|----------------|--------------|--------------|------------|------|----------|-----------|
| 5.110 | Sampling stations | type    | name   | code   | Cd   | Cr       | Cu             | Fe           | Ni           | Pb         | Zn   | Kemarks  | Reference |
| 1.    | PRS               | Water   | OCW    | W1     | 0.17 | 0.1      | 0.19           | 1.06         | 0.08         | 0.12       | 0.82 |          |           |
| 2.    | SOS               | Water   | OCW    | W2     | 0.11 | 0.08     | 0.15           | 0.39         | 0.06         | 0.1        | 0.41 |          |           |
| 3.    | CHB               | Water   | OCW    | W3     | 0.08 | BDL      | 0.1            | 0.22         | 0            | 0          | 0.2  |          |           |
| 4.    | CLB               | Water   | OCW    | W4     | 0.08 | BDL      | 0.14           | 0.35         | 0            | 0.08       | 0.25 |          |           |
|       |                   | Sum     |        |        | 0.44 | 0.18     | 0.58           | 2.02         | 0.14         | 0.30       | 1.68 |          |           |
|       |                   | Average |        |        | 0.11 | 0.09     | 0.15           | 0.51         | 0.04         | 0.08       | 0.42 |          |           |
|       |                   | Maximum |        |        | 0.17 | 0.10     | 0.19           | 1.06         | 0.08         | 0.12       | 0.82 |          |           |
|       |                   | Minimum |        |        | 0.08 | 0.08     | 0.10           | 0.22         | 0.00         | 0.00       | 0.20 |          |           |
|       |                   |         |        |        |      |          |                |              |              |            |      |          |           |
| 5.    | PRS               | Soil    | OCS    | S1     | 0.28 | 0.12     | 0.24           | 1.75         | 0.12         | 0.11       | 0.84 |          |           |
| 6.    | SOS               | Soil    | OCS    | S2     | 0.16 | 0.1      | 0.2            | 0.72         | 0.08         | 0.1        | 0.46 |          |           |
| 7.    | CHB               | Soil    | OCS    | S3     | 0.12 | 0.08     | 0.1            | 0.33         | 0            | 0.08       | 0.21 |          |           |
| 8.    | CLB               | Soil    | OCS    | S4     | 0.11 | BDL      | 0.15           | 0.56         | 0.06         | 0.08       | 0.32 |          |           |
|       |                   | Sum     |        |        | 0.67 | 0.30     | 0.69           | 3.36         | 0.26         | 0.37       | 1.83 |          |           |
|       |                   | Average |        |        | 0.17 | 0.10     | 0.17           | 0.84         | 0.07         | 0.09       | 0.46 |          |           |
|       |                   | Maximum |        |        | 0.28 | 0.12     | 0.24           | 1.75         | 0.12         | 0.11       | 0.84 |          |           |
|       |                   | Minimum |        |        | 0.11 | 0.08     | 0.10           | 0.33         | 0.00         | 0.08       | 0.21 |          |           |

| Table 4.9. Trace metal concentrations in | n oil contaminated regions. | Tiruchirappalli – June to | August 2015 (Premonsoon) |
|------------------------------------------|-----------------------------|---------------------------|--------------------------|
|                                          |                             |                           |                          |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

BDL - Below detectable limit (Not Determined); Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron; Ni - Nickel; Pb - Lead; Zn - Zinc

Amir H. Charkhabi, Mohamad Sakizadeh and Gholamreza Rafiee, (2005). Seasonal Fluctuation in Heavy Metal Pollution in Iran's Siahroud GW. Environ Sci & Pollut Res, 12 (5) 264 - 270.

N. Pourang, A. Nikouyan and J. H. Dennis, (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian gulf. Environmental Monitoring and Assessment, 109: 293–316.

S. Dhanakumar, K. Rutharvel Murthy, G. Solaraj, R. Mohanraj, (2013). Heavy-Metal Fractionation in Surface Sediments of the Cauvery GW Estuarine Region, Southeastern Coast of India. Arch Environ Contam Toxicol, 65 (1), 14 – 23.

| S.No | Sampling | Sample  | Sample | Sample |        |       | (    | Microbiolo<br>CFU/ml = w | gical para<br>ater; CFU/ | meters<br>(g = Soil) |      |     |       | Rem  | Refer |
|------|----------|---------|--------|--------|--------|-------|------|--------------------------|--------------------------|----------------------|------|-----|-------|------|-------|
|      | stations | type    | name   | coue   | TVC    | TC    | TS   | FC                       | FS                       | VC                   | SAC  | SHC | PC    | arks | ence  |
| Wate | r        |         |        |        |        |       |      |                          |                          |                      |      |     |       |      |       |
| 1.   | PRS      | Water   | OCW    | W1     | 74000  | 5200  | 430  | 620                      | 120                      | 130                  | 90   | 140 | 260   |      |       |
| 2.   | SOS      | Water   | OCW    | W2     | 46000  | 2130  | 310  | 430                      | 100                      | 100                  | 50   | 100 | 150   |      |       |
| 3.   | CHB      | Water   | OCW    | W3     | 11600  | 940   | 140  | 150                      | 60                       | 110                  | 60   | 70  | 100   |      |       |
| 4.   | CLB      | Water   | OCW    | W4     | 18200  | 1350  | 200  | 240                      | 90                       | 80                   | 80   | 90  | 140   |      |       |
|      |          | Sum     |        |        | 149800 | 9620  | 1080 | 1440                     | 370                      | 420                  | 280  | 400 | 650   |      |       |
|      |          | Average |        |        | 37450  | 2405  | 270  | 360                      | 92.5                     | 105                  | 70   | 100 | 162.5 |      |       |
|      |          | Maximum |        |        | 74000  | 5200  | 430  | 620                      | 120                      | 130                  | 90   | 140 | 260   |      |       |
|      |          | Minimum |        |        | 11600  | 940   | 140  | 150                      | 60                       | 80                   | 50   | 70  | 100   |      |       |
|      |          |         |        |        |        |       |      |                          |                          |                      |      |     |       |      |       |
| 5.   | PRS      | Soil    | OCS    | S1     | 129000 | 8700  | 710  | 810                      | 170                      | 130                  | 120  | 160 | 460   |      |       |
| 6.   | SOS      | Soil    | OCS    | S2     | 76000  | 3300  | 540  | 620                      | 120                      | 100                  | 90   | 120 | 320   |      |       |
| 7.   | CHB      | Soil    | OCS    | S3     | 30000  | 1540  | 160  | 210                      | 70                       | 70                   | 60   | 90  | 200   |      |       |
| 8.   | CLB      | Soil    | OCS    | S4     | 49000  | 2300  | 250  | 370                      | 100                      | 90                   | 100  | 110 | 260   |      |       |
|      |          | Sum     |        |        | 284000 | 15840 | 1660 | 2010                     | 460                      | 390                  | 370  | 480 | 1240  |      |       |
|      |          | Average |        |        | 71000  | 3960  | 415  | 502.5                    | 115                      | 97.5                 | 92.5 | 120 | 310   |      |       |
|      |          | Maximum |        |        | 129000 | 8700  | 710  | 810                      | 170                      | 130                  | 120  | 160 | 460   |      |       |
|      |          | Minimum |        |        | 30000  | 1540  | 160  | 210                      | 70                       | 70                   | 60   | 90  | 200   |      |       |

| Table 4 10 Microbiological levels, counts in ail contaminated ragic   | ng Tiruchirannalli Juna ta August 2015 (Promonsoon) |
|-----------------------------------------------------------------------|-----------------------------------------------------|
| Table 4. 10. Microbiological levels/ counts in on containinateu regio | ns, Thuchhappani – June to August 2015 (Fremonsoon) |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

OCW - Oil Contaminated Water; OCS - Oil Contaminated Soil

TVC – Total viable count; TC – Total coliforms; TS – Total *Streptococci*; FC – Fecal coliforms; FS – Fecal *Streptococci*; VC – *Vibrio* count; SAC – *Salmonella* count; SHC – *Shigella* count; PC – *Pseudomonas* count;

Clark A, Turner T, Dorothy KP, Goutham J, Kalavati C, Rajanna B (2003) Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety 56: 390–397. doi: 10.1016/S0147-6513(03)00098-8. Pubmed: 14575679.

Vignesh S, Muthukumar K, James RA (2012) Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin 64: 790–800. doi: 10.1016/j.marpolbul.2012.01.015. Pubmed: 22321173.

Vignesh S, Dahms HU, Emmanuel KV, Gokul MS, Muthukumar K, Kim BR, James RA (2014) Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment 186(3): 1875–1887. doi: 10.1007/s10661-013-3501-z. Pubmed: 24292984.

|      |                      | e          | re                    | le         |      |             |               |                 |            |             |             | (mg        | Physioc<br>g/l or ppr | hemica<br>n = wate  | l param<br>er; mg/k | eters<br>g = Soi        | il)                 |                           |                          |              |                        |                            |               |                   |
|------|----------------------|------------|-----------------------|------------|------|-------------|---------------|-----------------|------------|-------------|-------------|------------|-----------------------|---------------------|---------------------|-------------------------|---------------------|---------------------------|--------------------------|--------------|------------------------|----------------------------|---------------|-------------------|
| S.No | Sampling<br>stations | Sample typ | Sample<br>name / natu | Sample coo | рН   | TDS<br>Mg/I | EC $\mu S/cm$ | Salinity<br>ppt | DO<br>mg/l | BOD<br>mg/L | COD<br>mg/L | TA<br>mg/L | HT<br>HT              | ${ m Ca}^{2+}$ mg/L | ${ m Mg}^{2+}$ mg/L | Na <sup>+</sup><br>mg/L | $\mathrm{K}^+$ mg/L | HCO3 <sup>-</sup><br>mg/L | CO3 <sup>-</sup><br>mg/L | Cl -<br>mg/L | ${\rm SO_4^{2-}}$ mg/L | N-NO <sup>2-</sup><br>mg/L | O-PO4<br>mg/L | Oil - Gre<br>mg/L |
| 1.   | PRS                  | Water      | OCW                   | W1         | 8.2  | 635.8       | 1077.6        | 1               | 4.8        | 6.6         | 15.5        | 153.8      | 150.1                 | 71.6                | 78.5                | 52.4                    | 41.5                | 142.8                     | 0                        | 124.3        | 94.5                   | 10.5                       | 8.5           | 12.8              |
| 2.   | SOS                  | Water      | OCW                   | W2         | 7.6  | 452.3       | 766.6         |                 | 5.7        | 7.2         | 13.4        | 120.5      | 111.9                 | 48.5                | 63.4                | 41.6                    | 24.6                | 114.2                     | 0                        | 72.6         | 62.8                   | 7.2                        | 6.2           | 9.2               |
| 3.   | CHB                  | Water      | OCW                   | W3         | 7.8  | 247.7       | 419.8         |                 | 6.5        | 8.4         | 9.5         | 61.4       | 52.9                  | 21.5                | 31.4                | 19.8                    | 15.4                | 58.5                      | 0                        | 51.8         | 32.6                   | 2.1                        | 3.4           | 4.8               |
| 4.   | CLB                  | Water      | OCW                   | W4         | 8.1  | 347         | 588.1         |                 | 4.9        | 6.7         | 11.2        | 78.8       | 87.3                  | 37.8                | 49.5                | 27.3                    | 21.4                | 76.4                      | 0                        | 65.2         | 48.5                   | 4.6                        | 5.1           | 6.5               |
|      |                      | Su         | т                     |            | 31.7 | 1682.8      | 2852.2        | 1.0             | 21.9       | 28.9        | 49.6        | 414.5      | 402.2                 | 179.4               | 222.8               | 141.1                   | 102.9               | 391.9                     | 0.0                      | 313.9        | 238.4                  | 24.4                       | 23.2          | 33.3              |
|      |                      | Aver       | age                   |            | 7.9  | 420.7       | 713.1         | 1.0             | 5.5        | 7.2         | 12.4        | 103.6      | 100.6                 | 44.9                | 55.7                | 35.3                    | 25.7                | 98.0                      | 0.0                      | 78.5         | 59.6                   | 6.1                        | 5.8           | 8.3               |
|      |                      | Maxir      | пит                   |            | 8.2  | 635.8       | 1077.6        | 1.0             | 6.5        | 8.4         | 15.5        | 153.8      | 150.1                 | 71.6                | 78.5                | 52.4                    | 41.5                | 142.8                     | 0.0                      | 124.3        | 94.5                   | 10.5                       | 8.5           | 12.8              |
|      |                      | Minin      | пит                   |            | 7.6  | 247.7       | 419.8         | 1.0             | 4.8        | 6.6         | 9.5         | 61.4       | 52.9                  | 21.5                | 31.4                | 19.8                    | 15.4                | 58.5                      | 0.0                      | 51.8         | 32.6                   | 2.1                        | 3.4           | 4.8               |
|      |                      | ~ !!       |                       | <i></i>    |      |             |               |                 |            |             |             |            |                       |                     |                     |                         |                     |                           | -                        |              |                        |                            |               |                   |
| 5.   | PRS                  | Soil       | OCS                   | S1         | 8.6  | 998.7       | 1692.7        | 1               | 7.1        | 8.2         | 19.8        | 201.4      | 200.4                 | 115.8               | 84.6                | 116.5                   | 54.2                | 192.5                     | 0                        | 290.4        | 112.6                  | 11.2                       | 9.7           | 17.5              |
| 6.   | SOS                  | Soil       | OCS                   | S2         | 8.2  | 636.4       | 1078.6        | 1               | 5.4        | 7.4         | 17.2        | 136.5      | 149.4                 | 74.6                | 74.8                | 52.4                    | 28.4                | 134.2                     | 0                        | 164.5        | 81.4                   | 8.1                        | 6.8           | 12.4              |
| 7.   | CHB                  | Soil       | OCS                   | S3         | 7.4  | 345         | 584.7         | 0               | 5.8        | 7.6         | 13.7        | 78.5       | 84.3                  | 38.7                | 45.6                | 24.9                    | 18.8                | 71.6                      | 0                        | 84.6         | 42.6                   | 2.8                        | 4.2           | 7.8               |
| 8.   | CLB                  | Soil       | OCS                   | S4         | 7.8  | 481.8       | 816.6         | 0               | 6.2        | 8.1         | 14.6        | 123.8      | 115.4                 | 54.2                | 61.2                | 37.8                    | 22.6                | 118.5                     | 0                        | 101.8        | 63.5                   | 5.2                        | 5.8           | 10.2              |
|      |                      | Sur        | m                     |            | 32   | 2461.9      | 4172.7        | 2               | 24.5       | 31.3        | 65.3        | 540.2      | 549.5                 | 283.3               | 266.2               | 231.6                   | 124.0               | 516.8                     | 0.0                      | 641.3        | 300.1                  | 27.3                       | 26.5          | 47.9              |
|      |                      | Aver       | age                   |            | 8    | 615.4       | 1043.2        | 0.5             | 6.12       | 7.82        | 10.32       | 135.05     | 137.37                | 70.82               | 00.55               | 57.9                    | 31.0                | 129.2                     | 0.0                      | 160.3        | 75.0                   | 0.8                        | 0.0           | 12.0              |
|      |                      | Maxii      | пит                   |            | 8.6  | 998.7       | 1692.7        | Î               | 7.1        | 8.2         | 19.8        | 201.4      | 200.4                 | 115.8               | 84.6                | 116.5                   | 54.2                | 192.5                     | 0.0                      | 290.4        | 112.6                  | 11.2                       | 9.7           | 17.5              |
|      |                      | Minin      | пит                   |            | 7.4  | 345         | 584.7         | 0               | 5.4        | 7.4         | 13.7        | 78.5       | 84.3                  | 38.7                | 45.6                | 24.9                    | 18.8                | 71.6                      | 0.0                      | 84.6         | 42.6                   | 2.8                        | 4.2           | 7.8               |

#### Table 4. 11. Physiochemical parameters in oil contaminated regions, Tiruchirappalli – March to May 2015 (Summer)

PRS - Ponmalai Railway Shed; SOS - Senthaneerpuram Oil Shed; CHB - Chatram Bus Stand; CLB - Central Bus Stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

TDS – Total dissolved solids; EC – Electrical conductivity; Salinity; DO – Dissolved oxygen; BOD – Biological dissolved oxygen; TA – Total alkalinity; TH – Total hardness; Ca – Calcium; Mg – Magnesium; Na – Sodium; K – Potassium; HCO<sub>3</sub> – Bicarbonate; CO<sub>3</sub> – Carbonate; Cl – Chloride; SO<sub>4</sub> – Sulphate; N-NO2 – Nitrite; O-PO<sub>4</sub> – Ortho-phosphate; Oil & Gree – Oil & Greece

APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. 19th edn, Washington, DC.

Vignesh, S., Dahms, HU., Emmanuel, KV., Gokul, MS., Muthukumar, K., Kim, BR., James, RA. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India, Environ monit and assess, 186 (3), 1875 – 1887.

| S No  | Compling stations | Sample  | Sample | Sample |      | Trace met | tal parameters | (mg/l or ppm | = water; mg/ | kg = Soil) |      | Domoriza | Deference |
|-------|-------------------|---------|--------|--------|------|-----------|----------------|--------------|--------------|------------|------|----------|-----------|
| 5.INO | Sampling stations | type    | name   | code   | Cd   | Cr        | Cu             | Fe           | Ni           | Pb         | Zn   | Kemarks  | Reference |
| 1.    | PRS               | Water   | OCW    | W1     | 0.26 | 0.12      | 0.28           | 1.57         | 0.12         | 0.12       | 1.08 |          |           |
| 2.    | SOS               | Water   | OCW    | W2     | 0.15 | 0.08      | 0.16           | 0.64         | 0.1          | 0.11       | 0.62 |          |           |
| 3.    | CHB               | Water   | OCW    | W3     | 0.08 | 0.06      | 0.1            | 0.41         | BDL          | 0.06       | 0.31 |          |           |
| 4.    | CLB               | Water   | OCW    | W4     | 0.1  | 0.1       | 0.13           | 0.58         | 0.08         | 0.08       | 0.48 |          |           |
|       |                   | Sum     |        |        | 0.59 | 0.36      | 0.67           | 3.20         | 0.30         | 0.37       | 2.49 |          |           |
|       |                   | Average |        |        | 0.15 | 0.09      | 0.17           | 0.80         | 0.10         | 0.09       | 0.62 |          |           |
|       |                   | Maximum |        |        | 0.26 | 0.12      | 0.28           | 1.57         | 0.12         | 0.12       | 1.08 |          |           |
|       |                   | Minimum |        |        | 0.08 | 0.06      | 0.10           | 0.41         | 0.08         | 0.06       | 0.31 |          |           |
|       |                   |         |        |        |      |           |                |              |              |            |      |          |           |
| 5.    | PRS               | Soil    | OCS    | S1     | 0.48 | 0.18      | 0.42           | 2.84         | 0.16         | 0.19       | 1.42 |          |           |
| 6.    | SOS               | Soil    | OCS    | S2     | 0.25 | 0.12      | 0.25           | 1.24         | 0.12         | 0.14       | 0.75 |          |           |
| 7.    | CHB               | Soil    | OCS    | S3     | 0.12 | 0.01      | 0.14           | 0.65         | BDL          | 0.1        | 0.44 |          |           |
| 8.    | CLB               | Soil    | OCS    | S4     | 0.16 | 0.11      | 0.17           | 0.97         | 0.1          | 0.12       | 0.61 |          |           |
|       |                   | Sum     |        |        | 1.01 | 0.42      | 0.98           | 5.70         | 0.38         | 0.55       | 3.22 |          |           |
|       |                   | Average |        |        | 0.25 | 0.11      | 0.25           | 1.43         | 0.13         | 0.14       | 0.81 |          |           |
|       |                   | Maximum |        |        | 0.48 | 0.18      | 0.42           | 2.84         | 0.16         | 0.19       | 1.42 |          |           |
|       |                   | Minimum |        |        | 0.12 | 0.01      | 0.14           | 0.65         | 0.10         | 0.10       | 0.44 |          |           |

| Table 4. 12. Trace metal | concentrations in o | oil contaminated | regions. | Tiruchirappalli - | - March to May | <b>2015 (Summer)</b> |
|--------------------------|---------------------|------------------|----------|-------------------|----------------|----------------------|
|                          |                     |                  |          |                   |                |                      |

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

~ = Approximately; OCW – Oil Contaminated Water; OCS – Oil Contaminated Soil

BDL - Below detectable limit (Not Determined); Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron; Ni - Nickel; Pb - Lead; Zn - Zinc

Amir H. Charkhabi, Mohamad Sakizadeh and Gholamreza Rafiee, (2005). Seasonal Fluctuation in Heavy Metal Pollution in Iran's Siahroud GW. Environ Sci & Pollut Res, 12 (5) 264 - 270.

N. Pourang, A. Nikouyan and J. H. Dennis, (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian gulf. Environmental Monitoring and Assessment, 109: 293–316.

S. Dhanakumar, K. Rutharvel Murthy, G. Solaraj, R. Mohanraj, (2013). Heavy-Metal Fractionation in Surface Sediments of the Cauvery GW Estuarine Region, Southeastern Coast of India. Arch Environ Contam Toxicol, 65 (1), 14 – 23.

| S.No | Sampling<br>stations     Sample<br>type     Sample<br>name     Sample<br>code     Microbiological parameters<br>(CFU/ml = water; CFU/g = Soil)     F |         |      |      |        |        |       |       |     | Rem   | Refer |     |       |      |      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|--------|--------|-------|-------|-----|-------|-------|-----|-------|------|------|
|      | stations                                                                                                                                             | type    | name | coue | TVC    | TC     | TS    | FC    | FS  | VC    | SAC   | SHC | PC    | aiks | ence |
| Wate | er                                                                                                                                                   |         |      |      |        |        |       |       |     |       |       |     |       |      |      |
| 1.   | PRS                                                                                                                                                  | Water   | OCW  | W1   | 104000 | 10100  | 850   | 1130  | 210 | 150   | 130   | 180 | 430   |      |      |
| 2.   | SOS                                                                                                                                                  | Water   | OCW  | W2   | 74000  | 4100   | 640   | 870   | 140 | 120   | 120   | 140 | 310   |      |      |
| 3.   | CHB                                                                                                                                                  | Water   | OCW  | W3   | 18100  | 1350   | 200   | 250   | 80  | 80    | 90    | 100 | 200   |      |      |
| 4.   | CLB                                                                                                                                                  | Water   | OCW  | W4   | 29100  | 2060   | 330   | 440   | 110 | 100   | 130   | 140 | 250   |      |      |
|      |                                                                                                                                                      | Sum     |      |      | 225200 | 17610  | 2020  | 2690  | 540 | 450   | 470   | 560 | 1190  |      |      |
|      |                                                                                                                                                      | Average |      |      | 56300  | 4402.5 | 505   | 672.5 | 135 | 112.5 | 117.5 | 140 | 297.5 |      |      |
|      |                                                                                                                                                      | Maximum |      |      | 104000 | 10100  | 850   | 1130  | 210 | 150   | 130   | 180 | 430   |      |      |
|      |                                                                                                                                                      | Minimum |      |      | 18100  | 1350   | 200   | 250   | 80  | 80    | 90    | 100 | 200   |      |      |
|      |                                                                                                                                                      |         |      |      |        |        |       |       |     |       |       |     |       |      |      |
| 5.   | PRS                                                                                                                                                  | Soil    | OCS  | S1   | 192000 | 12400  | 1040  | 1420  | 260 | 180   | 170   | 230 | 920   |      |      |
| 6.   | SOS                                                                                                                                                  | Soil    | OCS  | S2   | 106000 | 6000   | 910   | 1100  | 180 | 150   | 150   | 170 | 650   |      |      |
| 7.   | CHB                                                                                                                                                  | Soil    | OCS  | S3   | 44000  | 2450   | 260   | 330   | 110 | 100   | 100   | 110 | 310   |      |      |
| 8.   | CLB                                                                                                                                                  | Soil    | OCS  | S4   | 71000  | 3900   | 420   | 780   | 150 | 130   | 140   | 150 | 490   |      |      |
|      |                                                                                                                                                      | Sum     |      |      | 413000 | 24750  | 2630  | 3630  | 700 | 560   | 560   | 660 | 2370  |      |      |
|      |                                                                                                                                                      | Average |      |      | 103250 | 6187.5 | 657.5 | 907.5 | 175 | 140   | 140   | 165 | 592.5 |      |      |
|      |                                                                                                                                                      | Maximum |      |      | 192000 | 12400  | 1040  | 1420  | 260 | 180   | 170   | 230 | 920   |      |      |
|      |                                                                                                                                                      | Minimum |      |      | 44000  | 2450   | 260   | 330   | 110 | 100   | 100   | 110 | 310   |      |      |

#### Table 4. 13. Microbiological levels/ counts in oil contaminated regions, Tiruchirappalli – March to May 2015 (Summer)

PRS - Ponmalai railway shed; SOS - Senthaneerpuram oil shed; CHBPB - Chatram Bus stand; CLBPB - Central Bus stand;

OCW - Oil Contaminated Water; OCS - Oil Contaminated Soil

TVC – Total viable count; TC – Total coliforms; TS – Total *Streptococci*; FC – Fecal coliforms; FS – Fecal *Streptococci*; VC – *Vibrio* count; SAC – *Salmonella* count; SHC – *Shigella* count; PC – *Pseudomonas* count;

Clark A, Turner T, Dorothy KP, Goutham J, Kalavati C, Rajanna B (2003) Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety 56: 390–397. doi: 10.1016/S0147-6513(03)00098-8. Pubmed: 14575679.

Vignesh S, Muthukumar K, James RA (2012) Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin 64: 790–800. doi: 10.1016/j.marpolbul.2012.01.015. Pubmed: 22321173.

Vignesh S, Dahms HU, Emmanuel KV, Gokul MS, Muthukumar K, Kim BR, James RA (2014) Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment 186(3): 1875–1887. doi: 10.1007/s10661-013-3501-z. Pubmed: 24292984.

**Table 4.15.** 

#### Descriptive Statistics-Physiochemical Parameter –Water and Soil Sample

| Parameters           | Ν  | Mean     | SD       | Sum      | Min      | Max      |
|----------------------|----|----------|----------|----------|----------|----------|
| pH-W                 | 16 | 7.78125  | 0.35444  | 124.5    | 7.2      | 8.4      |
| pH-S                 | 16 | 7.9125   | 0.50183  | 126.6    | 6.8      | 8.6      |
| TDS-W                | 16 | 390.3438 | 155.4656 | 6245.5   | 140.2    | 651.4    |
| TDS-S                | 16 | 653.9813 | 422.5164 | 10463.7  | 211.9    | 1956.8   |
| EC-W                 | 16 | 661.5996 | 263.501  | 10585.59 | 237.6271 | 1104.068 |
| EC-S                 | 16 | 1018.593 | 465.5205 | 16297.49 | 359.1525 | 1871.301 |
| Salinity-W           | 16 | 0.125    | 0.34157  | 2        | 0        | 1        |
| Salinity-S           | 16 | 0.625    | 0.80623  | 10       | 0        | 3        |
| DO-W                 | 16 | 5.56875  | 0.98028  | 89.1     | 3.4      | 6.8      |
| DO-S                 | 16 | 6.1125   | 0.92439  | 97.8     | 4.1      | 7.6      |
| BOD-W                | 16 | 11.3875  | 17.4858  | 182.2    | 5.5      | 76.9     |
| BOD-S                | 16 | 8.025    | 1.60395  | 128.4    | 6.1      | 13.5     |
| COD-W                | 16 | 12.29375 | 2.9149   | 196.7    | 7.4      | 17.4     |
| COD-S                | 16 | 13.9875  | 3.04037  | 223.8    | 8.4      | 19.8     |
| TA-W                 | 16 | 96.80625 | 39.46197 | 1548.9   | 35.8     | 165.4    |
| TA-S                 | 16 | 134.2688 | 54.80315 | 2148.3   | 51.2     | 246.8    |
| TH-W                 | 16 | 84.0125  | 40.90574 | 1344.2   | 24.4     | 159.9    |
| TH-S                 | 16 | 110.7375 | 55.54013 | 1771.8   | 24.3     | 224.8    |
| Ca-W                 | 16 | 40.85625 | 20.78368 | 653.7    | 14.2     | 81.5     |
| Ca-S                 | 16 | 59.94375 | 34.86199 | 959.1    | 16.1     | 142.5    |
| Mg-W                 | 16 | 43.15625 | 21.57437 | 690.5    | 8.4      | 78.5     |
| Mg-S                 | 16 | 52.04375 | 20.39202 | 832.7    | 19.8     | 84.6     |
| Na-W                 | 16 | 32.15625 | 13.96152 | 514.5    | 12.4     | 66.3     |
| Na-S                 | 16 | 53.9375  | 36.3806  | 863      | 15.4     | 140.5    |
| K-W                  | 16 | 23.86875 | 10.71539 | 381.9    | 9.5      | 48.9     |
| K-S                  | 16 | 28.49375 | 14.38149 | 455.9    | 12.6     | 63.2     |
| HCO <sub>3</sub> -W  | 16 | 92.3     | 37.67321 | 1476.8   | 30.6     | 161.4    |
| HCO <sub>3</sub> -S  | 16 | 123.5    | 49.72368 | 1976     | 43.5     | 224.6    |
| Cl-W                 | 16 | 73.55    | 33.37772 | 1176.8   | 23.8     | 145.2    |
| Cl-S                 | 16 | 154.5125 | 109.4442 | 2472.2   | 53.4     | 465.8    |
| SO <sub>4</sub> -W   | 16 | 56.6125  | 27.58635 | 905.8    | 18.4     | 115.6    |
| SO <sub>4</sub> -S   | 16 | 72.75625 | 32.59454 | 1164.1   | 23.4     | 137.2    |
| N-NO <sub>2</sub> -W | 16 | 5.73375  | 3.86714  | 91.74    | 1.5      | 15.2     |
| N-NO <sub>2</sub> -S | 16 | 6.39375  | 3.52429  | 102.3    | 1.8      | 13.6     |
| O-PO <sub>4</sub> -W | 16 | 6.0625   | 3.26963  | 97       | 2        | 14.4     |
| O-PO <sub>4</sub> -S | 16 | 6.09375  | 2.0949   | 97.5     | 2.6      | 10.1     |
| Oil-Greece-W         | 16 | 7.73125  | 3.39838  | 123.7    | 3        | 15.4     |
| Oil-Greece-S         | 16 | 11.875   | 5.1094   | 190      | 4.1      | 21.6     |

| Biosorption<br>study         Bacterial<br>strain 2         5 ppm         15 m         Metal Concentration<br>Percentage         2.16<br>Percentage           Biosorption<br>study         Bacterial<br>strain 1         10 ppm         15 m         Metal Concentration<br>Percentage         3.25<br>Percentage           Biosorption<br>study         10 ppm         15 m         Metal Concentration<br>Percentage         65.0           Parcentage         58.4         15 m         Metal Concentration<br>Percentage         62.1           Biosorption<br>study         10 ppm         15 m         Metal Concentration<br>Percentage         62.1           Percentage         58.4         15 m         Metal Concentration<br>Percentage         62.1           Percentage         58.3         15 m         Metal Concentration<br>Percentage         63.8           Percentage         58.3         15 m         Metal Concentration<br>Percentage         63.8           Percentage         63.8         15 m         Metal Concentration<br>Percentage         63.8           Percentage         63.6         15 m         Metal Concentration<br>Percentage         3.08           Percentage         64.0         15 m         Metal Concentration<br>Percentage         3.12           Percentage         62.4         15 m         Metal Concentration<br>Percentage         62.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Test<br>Strain | Metal<br>solution | рН   | Time | Metal level in n    | Metal level in medium* |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------------|------|------|---------------------|------------------------|--|--|--|
| Biosorption         Bacterial strain 1         5 ppm         4 pH         15 m         Percentage         55.2           Biosorption study         Bacterial strain 1         5 ppm         15 m         Metal Concentration         3.25           Biosorption study         Parcentage         65.0         9         9         9         9           Biosorption study         Parcentage         62.1         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                |                   |      |      | Metal Concentration | 2.76                   |  |  |  |
| $Bisorption study = Bacterial strain 2 \\ Bisorption strain stra$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                |                   |      | 15 m | Percentage          | 55.2                   |  |  |  |
| $Biosorption study = Bacterial strain 1 \\ Biosorption study = Chromium solution = Chromium = Chromium solution = Chromium = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                |                   | 4 pH |      | Ŭ                   |                        |  |  |  |
| $Biosorption study = \begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                   | r    |      | Metal Concentration | 2.21                   |  |  |  |
| Biosorption study = Bacterial strain 1  Biosorption study = Bacterial strain 1  Biosorption study = Bacterial strain 2  Biosorption solution = Bacterial strain 2  Biosorption solution = Bacterial strain 2  Biosorption = Bacterial Strain 2  Bios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                | 5 ppm             |      | 2 h  | Percentage          | 44.2                   |  |  |  |
| $Biosorption study = 15 m \frac{15 m}{2 h} \frac{Metal Concentration 3.25}{Percentage 65.0} \\ \hline \\ 15 m \frac{15 m}{Percentage 65.0} \\ \hline \\ 10 ppm \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 2.92}{Percentage 58.4} \\ \hline \\ 10 ppm \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 6.21}{Percentage 62.1} \\ \hline \\ 10 promund solution \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 5.83}{Percentage 58.3} \\ \hline \\ 10 promund \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 6.21}{Percentage 58.3} \\ \hline \\ 10 promund \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 7.16}{Percentage 71.6} \\ \hline \\ 10 promund \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 6.38}{Percentage 63.8} \\ \hline \\ 10 promund \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 6.38}{Percentage 66.8} \\ \hline \\ 10 ppm \frac{4 pH}{2 h} \frac{15 m}{2 h} \frac{Metal Concentration 3.08}{Percentage 66.6} \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 3.08}{Percentage 66.6} \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 3.08}{Percentage 66.0} \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 3.12}{Percentage 66.4} \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 7.16}{Percentage 66.0} \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 7.16}{Percentage 67.0} \\ \hline \\ \hline \\ 10 ppm \frac{15 m}{2 h} \frac{Metal Concentration 7.16}{Percentage 67.0} \\ \hline \\ \hline \\ \hline \\ 15 m \frac{Metal Concentration 7.16}{Percentage 71.6} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                |                   |      |      |                     |                        |  |  |  |
| Biosorption study = Bacterial strain 1 = 15 m  Biosorption study = Bacterial strain 1 = 10 ppm  Biosorption study = 10 ppm  Bio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | Chromium          |      |      | Metal Concentration | 3.25                   |  |  |  |
| Biosorption study = Bacterial strain 1 + Chromium solution + Chromium solutio + Chro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                | solution          |      | 15 m | Percentage          | 65.0                   |  |  |  |
| $\begin{array}{ c c c c c } \hline Bacterial strain 1 \\ \hline Biosorption study \\ \hline Biosorption study \\ \hline Biosorption study \\ \hline Biosorption study \\ \hline Biosorption \\ study \\ \hline Biosorption \\ study \\ \hline Biosorption \\ \hline Biosorption \\ \hline Biosorption \\ \hline Biosorption \\ \hline Chromium \\ solution \\ \hline T pH \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                |                   | 7 pH |      |                     |                        |  |  |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                   | · r  |      | Metal Concentration | 2.92                   |  |  |  |
| $\begin{array}{ c c c c c c } \hline Bacterial strain 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                |                   |      | 2 h  | Percentage          | 58.4                   |  |  |  |
| $ \begin{array}{ c c c c c } & \mbox{strain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c c c c } & \mbox{istrain 1} \\ & \mbox{istrain 1} \\ & \mbox{istrain 1} \\ & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c c c c c } & \mbox{istrain 1} \\ & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c c } & \mbox{istrain 1} \\ & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 1} \\ & \mbox{istrain 2} \\ \end{array} \begin{array}{ c } & \mbox{istrain 2} \\ \end{array} \begin{array}{ }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Bacterial      |                   |      |      |                     |                        |  |  |  |
| $ \begin{array}{c c c c c c c } Biosorption \\ study \\ \hline \\ Biosorption \\ \hline \\ Biosorption \\ study \\ \hline \\ \\ \hline \\ F \ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | strain 1       |                   |      |      | Metal Concentration | 6.21                   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                   |      | 15 m | Percentage          | 62.1                   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                   | 4 pH |      | Ŭ                   |                        |  |  |  |
| $ \begin{array}{ c c c c c } \hline 10 \ \text{pm} \\ \hline 10 \ \text{pm} \hline 10 \ \text{pm} \\ \hline 10 \ \text{pm} \hline 10 \ \text{pm} \hline 10 \ \text{pm} \\ \hline 10 \ \text{pm} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                |                   | · F  |      | Metal Concentration | 5.83                   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 10 ppm            |      | 2 h  | Percentage          | 58.3                   |  |  |  |
| $ \begin{array}{ c c c c c } \hline Biosorption \\ study \end{array} \hline \\ \hline Biosorption \\ study \end{array} \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                |                   |      |      |                     |                        |  |  |  |
| $ \begin{array}{ c c c c c } \hline \\ Biosorption \\ study \end{array} \\ \hline \\ Biosorption \\ study \end{array} \\ \hline \\ Biosorption \\ study \end{array} \\ \hline \\ \hline \\ Biosorption \\ study \end{array} \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                | Chromium          |      |      | Metal Concentration | 7.16                   |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                | solution          |      | 15 m | Percentage          | 71.6                   |  |  |  |
| $\begin{array}{ c c c c c } \hline Biosorption \\ study \end{array} \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                |                   | 7 pH |      |                     |                        |  |  |  |
| $\begin{array}{c c c c c c c c } \hline Biosorption \\ study \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline $ | D:          |                |                   | · r  |      | Metal Concentration | 6.38                   |  |  |  |
| study study $4 \text{ pH}$ $15 \text{ m}$ $Metal Concentration 3.08Percentage 61.62  h$ $Metal Concentration 2.72Percentage 54.4Chromium solution 7 \text{ pH} 15 \text{ m} Metal Concentration 3.48Percentage 68.07  pH 15  m Metal Concentration 3.12Percentage 62.4Metal Concentration 6.70Percentage 71.6Metal Concentration 6.70Percentage 67.07  pH 15  m Metal Concentration 6.70Percentage 77.4Metal Concentration 7.74Percentage 77.47  pH 15  m Metal Concentration 7.74Percentage 77.47  pH 7  pH 15  m Metal Concentration 7.74Percentage 77.47  pH 7  pH 15  m Metal Concentration 7.74Percentage 77.47  pH 7  pH 15  m Metal Concentration 7.74Percentage 77.47 \text{ pH} 7 \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Biosorption |                |                   |      | 2 h  | Percentage          | 63.8                   |  |  |  |
| $ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | study       |                |                   |      |      | Ť Ť                 |                        |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                   |      | 1.5  | Metal Concentration | 3.08                   |  |  |  |
| $Bacterial strain 2 = 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ 10 ppm \\ Chromium solution = 10 ppm \\ Chromium solution =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                |                   | 4 pH | 15 m | Percentage          | 61.6                   |  |  |  |
| $ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                |                   |      |      | Ĭ                   |                        |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                   |      | 2.1  | Metal Concentration | 2.72                   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | 5 ppm             |      | 2 h  | Percentage          | 54.4                   |  |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                | C1 .              |      |      |                     |                        |  |  |  |
| $ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                | Chromium          |      | 17   | Metal Concentration | 3.48                   |  |  |  |
| $ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                | solution          |      | 15 m | Percentage          | 68.0                   |  |  |  |
| $ \begin{array}{ c c c c c c c } \hline Bacterial \\ strain 2 \end{array} \begin{array}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                |                   | 7 pH |      |                     |                        |  |  |  |
| $ \begin{array}{ c c c c c c } \hline Bacterial \\ strain 2 \end{array} & \begin{array}{ c c c c } \hline 2 & h \end{array} & \begin{array}{ c c c } \hline Percentage & 62.4 \\ \hline Percentage & 62.4 \\ \hline \end{array} & \\ \hline \end{array} & \\ \hline \end{array} & \begin{array}{ c c } \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                |                   | •    | 0.1  | Metal Concentration | 3.12                   |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | <b>D</b> 1     |                   |      | 2 n  | Percentage          | 62.4                   |  |  |  |
| $\begin{array}{ c c c c c c c c } \mbox{strain 2} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Bacterial      |                   |      |      |                     |                        |  |  |  |
| 10  ppm $10  ppm$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | strain 2       |                   |      | 15   | Metal Concentration | 7.16                   |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                |                   |      | 15 m | Percentage          | 71.6                   |  |  |  |
| 10 ppm     2 h     Metal Concentration     6.70       Chromium solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |                   | 4 pH |      |                     |                        |  |  |  |
| 10 ppm     2 h     Percentage     67.0       Chromium solution     15 m     Metal Concentration     7.74       7 pH     2 h     Metal Concentration     6.92       2 h     Percentage     69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                | 10                |      | 2.1  | Metal Concentration | 6.70                   |  |  |  |
| Chromium<br>solution 7 pH 15 m Metal Concentration 7.74 Percentage 77.4<br>Metal Concentration 6.92 Percentage 69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                | 10 ppm            |      | 2 h  | Percentage          | 67.0                   |  |  |  |
| Chromium solution     15 m     Metal Concentration     7.74       7 pH     15 m     Percentage     77.4       2 h     Metal Concentration     6.92       Percentage     69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                | Chara             |      |      |                     |                        |  |  |  |
| Solution15 mPercentage77.47 pH2 hMetal Concentration6.92Percentage69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                | Chromium          |      | 15   | Metal Concentration | 7.74                   |  |  |  |
| 7 pH<br>2 h<br>Percentage<br>6.92<br>9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                | solution          |      | 15 m | Percentage          | 77.4                   |  |  |  |
| 2 h Metal Concentration 6.92<br>Percentage 69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                |                   | 7 pH |      | -                   |                        |  |  |  |
| <sup>2</sup> h Percentage 69.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                |                   | -    | 0.1  | Metal Concentration | 6.92                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                |                   |      | 2 h  | Percentage          | 69.2                   |  |  |  |

| Table 4.16. The chromium biosorption studies of two bacterial strains with dry bioma | ass |
|--------------------------------------------------------------------------------------|-----|
|--------------------------------------------------------------------------------------|-----|

#### **Table 4.17**

| Parameters | Ν  | Mean    | SD      | Sum   | Min  | Max  |
|------------|----|---------|---------|-------|------|------|
| Cd-W       | 16 | 0.14125 | 0.07693 | 2.26  | 0.06 | 0.34 |
| Cd-S       | 16 | 0.23312 | 0.153   | 3.73  | 0.1  | 0.65 |
| Cr-S       | 16 | 0.08562 | 0.04016 | 1.37  | 0    | 0.15 |
| Cr-S       | 16 | 0.10563 | 0.05513 | 1.69  | 0    | 0.22 |
| Cu-W       | 16 | 0.15875 | 0.06459 | 2.54  | 0.08 | 0.32 |
| Cu-S       | 16 | 0.22938 | 0.11156 | 3.67  | 0.1  | 0.52 |
| Fe-W       | 16 | 0.72375 | 0.47614 | 11.58 | 0.22 | 1.84 |
| Fe-S       | 16 | 1.28313 | 0.88363 | 20.53 | 0.33 | 3.46 |
| Ni-W       | 15 | 0.05867 | 0.04502 | 0.88  | 0    | 0.12 |
| Ni-S       | 16 | 0.0925  | 0.05651 | 1.48  | 0    | 0.2  |
| Pb-W       | 16 | 0.08812 | 0.04004 | 1.41  | 0    | 0.14 |
| Pb-S       | 16 | 0.125   | 0.04    | 2     | 0.08 | 0.22 |
| Zn-W       | 16 | 0.58625 | 0.31003 | 9.38  | 0.2  | 1.24 |
| Zn-S       | 16 | 0.75    | 0.44744 | 12    | 0.21 | 1.86 |

#### Descriptive Statistics for Heavy Metal Parameter-Water And Soil

|                             |    |      |       | Oil cont | aminated re | egions - B | acterial isolate | es $(n = 6)$ | 0) Copper (Cu) met |
|-----------------------------|----|------|-------|----------|-------------|------------|------------------|--------------|--------------------|
|                             |    |      |       |          | solution    | n          |                  |              |                    |
| Percentage of growth        |    |      | 10 mM |          | 50 mM       |            | 100 mM           |              | 250 mM             |
| -                           | Ν  | %    | Ν     | %        | Ν           | %          | Ν                | %            |                    |
| 0-10 percentage of growth   | -  | -    | -     | -        | -           | -          | -                | -            |                    |
| 11-20 percentage of growth  | -  | -    | -     | -        | -           | -          | -                | -            |                    |
| 21-30 percentage of growth  | -  | -    | -     | -        | -           | -          | -                | -            |                    |
| 31-40 percentage of growth  | -  | -    | -     | -        | -           | -          | -                | -            |                    |
| 41-50 percentage of growth  | -  | -    | -     | -        | -           | -          | 1                | 1.5          |                    |
| 51-60 percentage of growth  | -  | -    | -     | -        | -           | -          | 4                | 6.5          |                    |
| 61-70 percentage of growth  | -  | -    | -     | -        | 07          | 11.5       | 18               | 30           |                    |
| 71-80 percentage of growth  | -  | -    | 10    | 16.5     | 27          | 45.0       | 37               | 62           |                    |
| 81-90 percentage of growth  | 05 | 8.5  | 33    | 55.0     | 26          | 43.5       | -                | -            |                    |
| 91-100 percentage of growth | 55 | 91.5 | 17    | 21.5     | -           | -          | -                | -            |                    |

#### Table 4.18. Percentage of isolated copper resistance strains from oil contaminated regions of Tiruchirappalli, Tamil Nadu

|                   | 10 mM | 50 mM | 100 mM | 250 mM |
|-------------------|-------|-------|--------|--------|
| Resistant strains | 60    | 54    | 43     | 03     |

N / n – Numbers; mM – Milli Molar; % - Percentage

|                             |    |      |       | Oil cont | aminated re | egions - B | acterial isolat | es ( $n = 60$ | )) Chromium |
|-----------------------------|----|------|-------|----------|-------------|------------|-----------------|---------------|-------------|
| _                           |    |      |       |          | (Cr) met    | al solutio | n               |               |             |
| Percentage of growth        |    |      | 10 mM | 50 mM    |             |            | 100 mM          |               | 250 mM      |
| -                           | Ν  | %    | Ν     | %        | Ν           | %          | Ν               | %             |             |
| 0-10 percentage of growth   | -  | -    | -     | -        | -           | -          | -               | -             |             |
| 11-20 percentage of growth  | -  | -    | -     | -        | -           | -          | -               | -             |             |
| 21-30 percentage of growth  | -  | -    | -     | -        | -           | -          | -               | -             |             |
| 31-40 percentage of growth  | -  | -    | -     | -        | -           | -          | -               | -             |             |
| 41-50 percentage of growth  | -  | -    | -     | -        | -           | -          | 06              | 10            |             |
| 51-60 percentage of growth  | -  | -    | -     | -        | 01          | 1.5        | 11              | 18            |             |
| 61-70 percentage of growth  | -  | -    | -     | -        | 08          | 13.5       | 23              | 38.5          |             |
| 71-80 percentage of growth  | -  | -    | 06    | 10       | 31          | 51.5       | 20              | 33.5          |             |
| 81-90 percentage of growth  | 08 | 13.5 | 32    | 53.5     | 20          | 33.5       | -               | -             |             |
| 91-100 percentage of growth | 52 | 86.5 | 22    | 36.5     | -           | -          | -               | -             |             |

#### Table 4.19. Percentage of isolated chromium resistance strains from oil contaminated regions of Tiruchirappalli, Tamil Nadu

Minimal inhibitory concentration (MIC) of chromium – Bacterial strains – (n = 60)

|                   | 10 mM | 50 mM | 100 mM | 250 mM |
|-------------------|-------|-------|--------|--------|
| Resistant strains | 60    | 51    | 39     | 01     |

N/n - Numbers; mM - Milli Molar; % - Percentage

|             | Test      | Metal                        | pН    | Time  | Metal level in n    | nedium*             |
|-------------|-----------|------------------------------|-------|-------|---------------------|---------------------|
|             | Strain    | solution                     | -     |       | Metal Concentration | 2.12                |
|             |           |                              |       | 15 m  | Percentage          | 42.12               |
|             |           |                              | 4 nH  |       | Tereentage          | 72.7                |
|             |           |                              | - p11 |       | Metal Concentration | 1.88                |
|             |           | 5 ppm                        |       | 2 h   | Percentage          | 37.6                |
|             |           | ~                            |       |       |                     |                     |
|             |           | Copper                       |       | 1.5   | Metal Concentration | 3.06                |
|             |           | solution                     |       | 15 m  | Percentage          | 61.2                |
|             |           |                              | 7 pH  |       |                     |                     |
| ]           |           |                              |       | 2 h   | Metal Concentration | 2.82                |
|             | Pastarial |                              |       | 2 11  | Percentage          | 56.4                |
|             | strain 1  |                              |       |       |                     |                     |
|             | Strain 1  |                              |       | 15 m  | Metal Concentration | 4.84                |
|             |           |                              |       | 15 11 | Percentage          | 48.4                |
|             |           |                              | 4 pH  |       |                     | <b>2</b> 0 <b>7</b> |
|             |           | 10 ppm<br>Copper<br>solution |       | 2 h   | Metal Concentration | 3.95                |
|             |           |                              |       |       | Percentage          | 39.5                |
|             |           |                              |       |       | Matal Concentration | ( 19                |
|             |           |                              | 7 pH  | 15 m  | Metal Concentration | 0.18                |
|             |           |                              |       |       | Percentage          | 01.8                |
| Biosorption |           |                              |       |       | Metal Concentration | 5.65                |
|             |           |                              |       | 2 h   | Percentage          | 56.5                |
| study       |           |                              |       |       | Tereentage          | 5015                |
|             |           | 5 ppm<br>Copper<br>solution  | 4 pH  | 15 m  | Metal Concentration | 2.69                |
|             |           |                              |       |       | Percentage          | 53.8                |
|             |           |                              |       |       |                     |                     |
|             |           |                              |       | 2 h   | Metal Concentration | 2.15                |
|             |           |                              |       |       | Percentage          | 43.0                |
|             |           |                              |       |       |                     |                     |
|             |           |                              | 7 pH  | 15 m  | Metal Concentration | 3.58                |
|             |           |                              |       |       | Percentage          | 71.6                |
|             |           |                              |       |       |                     |                     |
|             |           |                              |       | 2 h   | Metal Concentration | 3.12                |
|             | Bacterial |                              |       |       | Percentage          | 62.4                |
|             | strain 2  |                              |       |       | Motal Concentration | 6 10                |
|             |           |                              |       | 15 m  | Percentage          | 61.0                |
|             |           |                              | 4 nU  |       | Tercentage          | 01.0                |
|             |           |                              | 4 рп  |       | Metal Concentration | 5 34                |
|             |           | 10 ppm                       |       | 2 h   | Percentage          | 53.4                |
|             |           |                              |       |       |                     | 55.7                |
|             |           | Copper                       |       |       | Metal Concentration | 7.05                |
|             |           | solution                     |       | 15 m  | Percentage          | 70.5                |
|             |           |                              | 7 pH  |       |                     |                     |
|             |           |                              | · P   |       | Metal Concentration | 6.26                |
|             |           |                              |       | 2 h   | Percentage          | 62.6                |
|             | 1         | 1                            | 1     | 1     |                     |                     |

Table 4.20. The copper biosorption studies of two bacterial strains with dry biomass

PPM – Parts per million; m – Minutes; h – Hours \* - It indirectly indicated the metal absorption by bacterial strains

|             | Test<br>Strain | Metal<br>solution              | рН   | Time | Metal level in n                  | nedium* |
|-------------|----------------|--------------------------------|------|------|-----------------------------------|---------|
|             | Strum          | bolution                       |      | 15 m | Metal Concentration<br>Percentage | 2.76    |
|             |                |                                | 4 pH |      |                                   |         |
|             |                | 5 ppm                          |      | 2 h  | Metal Concentration               | 2.21    |
|             |                | Chromium                       |      |      |                                   | 77.2    |
|             |                | solution                       |      | 15 m | Metal Concentration               | 3.25    |
|             |                |                                | 7 pH |      |                                   | 05.0    |
|             |                |                                |      | 2 h  | Metal Concentration               | 2.92    |
|             | Bacterial      |                                |      |      | Percentage                        | 58.4    |
|             | strain 1       |                                |      | 15 m | Metal Concentration               | 6.21    |
|             |                |                                | 4 pH |      | Percentage                        | 02.1    |
|             |                | 10 ppm<br>Chromium<br>solution |      | 2 h  | Metal Concentration               | 5.83    |
|             |                |                                |      |      | Percentage                        | 58.5    |
|             |                |                                | 7 pH | 15 m | Metal Concentration               | 7.16    |
|             |                |                                |      |      | Percentage                        | /1.0    |
| Biosorption |                |                                |      | 2 h  | Metal Concentration               | 6.38    |
| study       |                |                                |      |      | Percentage                        | 63.8    |
|             |                | 5 ppm<br>Chromium<br>solution  | 4 pH | 15 m | Metal Concentration               | 3.08    |
|             |                |                                |      |      | Percentage                        | 61.6    |
|             |                |                                |      | 2 h  | Metal Concentration               | 2.72    |
|             |                |                                |      |      | Percentage                        | 54.4    |
|             |                |                                |      | 15 m | Metal Concentration               | 3.48    |
|             |                |                                | 7 pH |      | Percentage                        | 68.0    |
|             |                |                                | •    | 2 h  | Metal Concentration               | 3.12    |
|             | Bacterial      |                                |      |      | Percentage                        | 62.4    |
|             | strain 2       |                                |      | 15 m | Metal Concentration               | 7.16    |
|             |                |                                | 4 pH |      | Percentage                        | /1.0    |
|             |                | 10 ppm                         | •    | 2 h  | Metal Concentration               | 6.70    |
|             |                | Char                           |      |      | rercentage                        | 07.0    |
|             |                | solution                       |      | 15 m | Metal Concentration               | 7.74    |
|             |                |                                | 7 pH |      | Percentage                        | //.4    |
|             |                |                                |      | 2 h  | Metal Concentration               | 6.92    |
|             |                |                                |      | - 11 | Percentage                        | 69.2    |

Table 4.21 The chromium biosorption studies of two bacterial strains with dry biomass

PPM – Parts per million; m – Minutes; h – Hours \* - It indirectly indicated the metal absorption by bacterial strains

|            | Ba                | cterial strai | n 1 (pH – 7.0 ± | ± 0.2; T° - 36 | 0° C ± 1)   |       |            |  |  |
|------------|-------------------|---------------|-----------------|----------------|-------------|-------|------------|--|--|
|            | 50 ppm C          | u             |                 | 50 ppm Cr      |             |       |            |  |  |
| 36 ho      | urs               | 72 ho         | urs             | 36 ho          | urs         | 72 ho | urs        |  |  |
| М          | Domontago         | Metal         | Domoontogo      | Metal          | Donconto go | Metal | Domoontogo |  |  |
| et         | Tercentage        | Conc          | rercentage      | Conc           |             | Conc  |            |  |  |
| al         |                   |               |                 |                |             |       |            |  |  |
| С          |                   |               |                 |                |             |       |            |  |  |
| on         |                   |               |                 |                |             |       |            |  |  |
| c          |                   |               |                 |                |             |       |            |  |  |
| Metal ads  | orbed by microbes |               |                 |                |             |       |            |  |  |
| 13.8       | 27.6              | 18.2          | 36.4            | 11.2           | 22.4        | 13.6  | 27.2       |  |  |
| Metal obta | ained in medium   |               |                 |                |             |       |            |  |  |
| 36.2       | 72.4              | 31.8          | 63.6            | 38.8           | 77.6        | 36.4  | 72.8       |  |  |

#### Table 4.22. The bioaccumulation studies of bacterial strains 1 with living biomass

Metal conc – Metal concentration; T<sup>o</sup> - Temperature; PPM – Parts per million; Cu – Copper; Cr – Chromium

#### Table 4.23 The bioaccumulation studies of bacterial strains 2 with living biomass

|           | Ba                | cterial strai | n 2 (pH – 7.0 ± | ± 0.2; T° - 36 | $^{\circ}$ C ± 1) |               |            |  |
|-----------|-------------------|---------------|-----------------|----------------|-------------------|---------------|------------|--|
|           | 50 ppm C          | u             |                 | 50 ppm Cr      |                   |               |            |  |
| 36 ho     | urs               | 72 hours      |                 | 36 hours       |                   |               | irs        |  |
| M<br>et   | Percentage        | Metal<br>Conc | Percentage      | Metal<br>Conc  | Percentage        | Metal<br>Conc | Percentage |  |
| al        |                   |               |                 |                |                   |               |            |  |
| С         |                   |               |                 |                |                   |               |            |  |
| on        |                   |               |                 |                |                   |               |            |  |
| c         |                   |               |                 |                |                   |               |            |  |
| Metal ads | orbed by microbes |               |                 |                |                   |               |            |  |
| 10.8      | 21.6              | 14.4          | 28.8            | 8.6            | 17.2              | 11.2          | 22.4       |  |
| Metal obt | ained in medium   |               |                 |                |                   |               |            |  |
| 39.2      | 78.4              | 35.6          | 71.2            | 41.4           | 82.8              | 38.8          | 77.0       |  |

% Metal adsorbed =  $(C_i - C_f) / C_i$  x 100

Where,  $C_i$  and  $C_f$  are the initial and equilibrium metal ion concentrations (mg L<sup>-1</sup>), respectively.

# Table 4.24The bioaccumulation studies of bacterial strains 1 with living biomass – Field trail

|                               |                          | Bao          | cterial strain | 1 (pH − 7.0 ± | = 0.2; T° - 35° C $\pm$ 2;    | 200                      |            |               |       |
|-------------------------------|--------------------------|--------------|----------------|---------------|-------------------------------|--------------------------|------------|---------------|-------|
|                               |                          |              |                | rpm)          | 1                             |                          | 10 pp      | m Cr          |       |
| Cu level in raw sewage sample | 3                        | 10 pj<br>6 h | om Cu<br>7     | 72 h          | Cr level in raw sewage sample |                          | 36 h       | ,             | 72 h  |
| (ppm)                         | Metal<br>conc            | %            | Metal conc     | %             | (ppm)                         | Metal<br>conc            | %          | Metal<br>conc | %     |
|                               | Μ                        | letal adso   | orbed by mi    | crobes        |                               | М                        | etal adsor | rbed by mic   | robes |
| 0.34                          | 1.37                     | 13.7         | 1.85           | 18.5          | 0.15                          | 0.94                     | 9.4        | 1.12          | 11    |
| 0.54                          | Metal obtained in medium |              |                |               |                               | Metal obtained in medium |            |               | lium  |
|                               | 8.97                     | 86.7         | 8.49           | 82.1          | -                             | 9.21                     | 90.7       | 9.03          | 88.   |

Metal conc – Metal concentration; % - Percentage; T<sup>o</sup> - Temperature; ppm – Parts per million; Cu – Copper; Cr – Chromium

# Table 4.25The bioaccumulation studies of bacterial strains 2 with living biomass – Field trail

|                   |                          | B1           | osorption Stu   | dy - Metal          | adsorbed by organis                   | sms                      |         |            |      |
|-------------------|--------------------------|--------------|-----------------|---------------------|---------------------------------------|--------------------------|---------|------------|------|
|                   |                          | Bac          | terial strain 2 | (pH – 7.0 ±<br>rpm) | $0.2; 1^{\circ} - 35^{\circ} C \pm 2$ | ; 200                    | 10 pp   | m Cr       |      |
| Cu level in raw   | 3                        | 10 pj<br>6 h | om Cu<br>7      | 2 h                 | Cr level in raw                       | 3                        | 6 h     |            | 72 h |
| (ppm)             | Metal<br>conc            | %            | Metal<br>conc   | %                   | (ppm)                                 | Metal conc               | %       | Metal conc | %    |
| Metal adsorbed by |                          |              |                 |                     |                                       | Metal                    | adsorbe | d by micro | obes |
| -                 | m<br>1.06                | 10.6<br>12.2 | 1.22            |                     | 0.15                                  | 0.72                     | 7.2     | 0.94       | 9.4  |
|                   | Metal obtained in medium |              |                 |                     |                                       | Metal obtained in medium |         |            | 1    |
| -                 | 9.28                     | 89.7         | 9.12            | 88.2                | -                                     | 9.43                     | 92.9    | 9.21       | 9    |

Metal concentration; % - Percentage; To - Temperature; ppm - Parts per million; Cu - Copper; Cr - Chromium

% Metal adsorbed =  $(C_i - C_f) / C_i$  x 100

Where,  $C_i$  and  $C_f$  are the initial and equilibrium metal ion concentrations (mg L<sup>-1</sup>), respectively.

Figure 1

## **Spatial Overall Physiochemical Parameters - Water**



#### FIGURE;1

### **Spatial Overall Physiochemical Parameters - Water**



## Figure 2

**Spatial Overall Physiochemical Parameters - Soil** 



# Plate 1 HETEROTROPIC BACTERIAL STUDIES SELECTIVE MEDIUM USED FOR ENUMERATION OF BACTERIA .



| P1     | -     | TCBS-Green colonies           |
|--------|-------|-------------------------------|
| P2     | -     | Macconkey Agar-Pale pink      |
| coloni | es P3 | - XLD-Agar-Dark pink          |
| coloni | es    |                               |
| P4     | -     | Cetrimide Agar-Green colonies |
|        |       |                               |

Plate 2

## HEAVY METALS RESISTANCE BY WELL DIFFUSION METHOD

# Radial streaking of isolated bacterial strains in Nutrient Agar medium and performed metal resistance analysis.

1.2.1a. Copper resistant strains in Nutrient Agar medium





### CONCLUSION;

Natural and anthropogenic activities generate large quantities of aqueous effluents containing toxic metals. Many studies have been conducted in recent decades aimed at lowering metal concentrations derived from natural resources. In this study, the microbiological, physico-chemical parameters and heavy metal concentration of water and soil samples showed that this area was highly contaminated by anthropogenic activities espcialy oil contaminated sewage wastes. In general, the high levels of metal and metal resistance in bacteria reflect the widespread use of these metals in these study sites. In addition, considerable effort has been made to develop efficient and cost- effective technologies and apply them to sewage / industrial wastewater treatment. The potential for microorganisms to remove metals from solutions through passive and active mechanisms has been shown to be an interesting approach to metal uptake in polluted waters, and the efficiency of such processes is dependent on the experimental conditions, the target pollutant and various other factors.

The application of this type of bioremediation process in large scale remains, however, a challenge, and a preventive approach to metal pollution problems is therefore encouraged. Further investigations aimed at the identification of the mechanisms involved the characterization of biosorbents, and advances in genetic engineering are required. The copper removal potential of bacterial strain 1 was higher than bacterial strain 2 and also the same pattern follow in the chromium removal methods. Interestingly, the copper was highly

#### © 2024 IJRAR March 2024, Volume 11, Issue 1

#### www.ijrar.org (E-ISSN 2348-1269, P- ISSN 2349-5138)

removed by microbes than chromium. The bacterial strain 1 effectively removed the metals from a both field trail and natural (medium + metal solution) samples due to its higher metal tolerance, residual growth rate and efficient metal removal. However, several phases of metal-bacteria interactions remain unexplored and further improvement and application are necessary. The present results indicate that both *Pseudomonas* biomasses may be a suitable material for the removal of copper and chromium ions from the solution. However, desorption experiments remain to be performed to assess the reusability of this low-cost

iosorbent. Furthermore, in view of the practical application of this waste biomass to the treatment of metal bearing matters, this preliminary study needs obviously to be completed by additional experiments concerning in particular the influence of ionic strength and diverse constituents that are frequently found in actual industrial effluents, such as surfactants, complexing agents and other metal ions. These extensions are under investigation and will be reported later.

#### REFERENCES

APHA (American Public Health Association), 1998. Standard methods for the examination of water and wastewater. 19<sup>th</sup> edn, Washington, DC.marine recreational beaches, Southern India. Environmental Monitoring and Assessment 186(3):1875–1887. 18. Vignesh S, Hans-Uwe Dahms, Kumarasamy P, Rajendran A, Arthur Bong, C.W., Malfatti, F., Azam, F., Obayashi, Y., Suzuki, S., 2010. The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. Journal of Basic Microbiology. 47, 453 – 467 . 2. Brynhildsen, L., Lundgren, B.V., Allard, B., Rosswall, T., 1988. Effects of glucose concentrations on cadmium, copper, mercury and zinc toxicity to a Klebsiella sp. Applied Environmental Microbiology. 54, 1689

- 1691.

- De J, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle , Fukami K. Potential of mercury-resistant marine bacteria for detoxification of chemical of environmental concern. Microbes and Environment. 2007;22:336–345.
- De Rore, H., Top, E., Houwen, F., Mergeay, M., Verstraete, W., 1994. Evolution of heavy metal resistant transconjugants in a soil environment with a concomitant selective pres. FEMS Microbial Ecology. 14, 263 273.

3. Forstner, U., Wittman, G.T.W., 1983. Metal Pollution in Aquatic Environment, Springer-Verlag Berlin, Heidelberg, New York. 484 – 488.

4.Hassen, N., Saidi, A., Cherif, M., Boudabous, 1998. Resistance of environmental. Bacteria to heavy metals. Bioresource Technology. 64, 7 – 15.

5. Hideomi, N., Ishikaw, T., Yasunaga, S., Kondo, I., Mitsuhasi, S., 1977. Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature. 266, 165 – 167

. 6.. Hussein, H., Farag S., Kandil K., Moawad H., 2004. Tolerance and uptake of heavy metals by Pseudomonads. Process Biochemistry. 40, 955 – 961.

7.. Kishe, M.A., Machiwa, J.F., 2003. Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environmental International. 28, 619 – 625

. 8.. Kumarasamy P, Vignesh S, Arthur James R, Muthukumar K, Rajendran A (2009) Enumeration and identification of pathogenic pollution indicators in Cauvery River, South India. Research Journal of Microbiology 4:540–549.

#### © 2024 IJRAR March 2024, Volume 11, Issue 1

Muthukumar K, Vignesh S, Dahms HU, Gokul MS, Palanichamy S, Subramanian G, Arthur James R. 2015. Antifouling assessments on biogenic nanoparticles: A filed study from polluted offshore platform. Marine Pollution Bulletin. http://dx.doi.org/10.1016/j.mar.bul.2015.08.033. 13. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

14. Peerzada, N., Mcmorrow, L., Skiliros, S., Guinea, M., and Ryan, P., 1990. Distribution of heavy metals in gove harbors. Science of the Total Environment. 92, 1 - 12. 15

. Silva, A. A. L. E., and Hofer, E. (1993). Resistance to antibiotics and heavy metals in Escherichia coli from marine fish, environmental toxicology and water quality. Environmental Toxicology and Water Quality, 8, 1–11. 16. Souza, M.J.D., Nair, S., Lokabharathi, P.A., Chandramohan, D., 2006. Metal and antibioticresistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology. 15, 379 – 384.

17. Vignesh S, Dahms HU, Emmanuel KV, Gokul MS, Muthukumar K, Kim BR, James RA. 2014. Physicochemical parameters aid microbial community? A case study from marinerecreational beaches, Southern India. Environmental Monitoring and Assessment 186(3):1875–1887.

18. Vignesh S, Hans-Uwe Dahms, Kumarasamy P, Rajendran A, Arthur James R. 2015. Micro

bialeffects on geochemical parameters in a tropical perennial river basin. Environmental Processes. 2: 125-144. 19.

Vignesh S, Muthukumar K, James RA. 2012. Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin 64:790–800.

20. Vignesh S, Muthukumar K, Santhosh Gokul M, Arthur James R. 2013. Microbial pollution indicators in Cauvery river, southern India. In Mu. Ramkumar (Ed.), On a Sustainable Future of the Earth's Natural Resources, Springer earth system sciences, pp. 363–376. doi 10.1007/978-3-642- 32917-3-20. 21. Vinothini and Ravikumar. 2016. Assessment of Yu K., Tasi, L., Chen, S., 2001. Chemical binding of heavy metals in anoxic river sediments. Water Research. 35, 4086 – 4094